dolphin/Source/Core/DiscIO/NANDImporter.cpp
2022-08-01 10:00:42 -07:00

270 lines
8.2 KiB
C++

// Copyright 2017 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "DiscIO/NANDImporter.h"
#include <algorithm>
#include <cstring>
#include "Common/Crypto/AES.h"
#include "Common/FileUtil.h"
#include "Common/IOFile.h"
#include "Common/Logging/Log.h"
#include "Common/MsgHandler.h"
#include "Core/IOS/ES/Formats.h"
namespace DiscIO
{
constexpr size_t NAND_SIZE = 0x20000000;
constexpr size_t NAND_KEYS_SIZE = 0x400;
NANDImporter::NANDImporter() : m_nand_root(File::GetUserPath(D_WIIROOT_IDX))
{
}
NANDImporter::~NANDImporter() = default;
void NANDImporter::ImportNANDBin(const std::string& path_to_bin,
std::function<void()> update_callback,
std::function<std::string()> get_otp_dump_path)
{
m_update_callback = std::move(update_callback);
if (!ReadNANDBin(path_to_bin, get_otp_dump_path))
return;
if (!FindSuperblock())
return;
ExportKeys();
ProcessEntry(0, "");
ExtractCertificates();
}
bool NANDImporter::ReadNANDBin(const std::string& path_to_bin,
std::function<std::string()> get_otp_dump_path)
{
constexpr size_t NAND_TOTAL_BLOCKS = 0x40000;
constexpr size_t NAND_BLOCK_SIZE = 0x800;
constexpr size_t NAND_ECC_BLOCK_SIZE = 0x40;
constexpr size_t NAND_BIN_SIZE =
(NAND_BLOCK_SIZE + NAND_ECC_BLOCK_SIZE) * NAND_TOTAL_BLOCKS; // 0x21000000
File::IOFile file(path_to_bin, "rb");
const u64 image_size = file.GetSize();
if (image_size != NAND_BIN_SIZE + NAND_KEYS_SIZE && image_size != NAND_BIN_SIZE)
{
PanicAlertFmtT("This file does not look like a BootMii NAND backup.");
return false;
}
m_nand.resize(NAND_SIZE);
for (size_t i = 0; i < NAND_TOTAL_BLOCKS; i++)
{
// Instead of updating on every cycle, we only update every 1000 cycles for a balance between
// not updating fast enough vs updating too fast
if (i % 1000 == 0)
m_update_callback();
file.ReadBytes(&m_nand[i * NAND_BLOCK_SIZE], NAND_BLOCK_SIZE);
// We don't care about the ECC blocks
file.Seek(NAND_ECC_BLOCK_SIZE, File::SeekOrigin::Current);
}
m_nand_keys.resize(NAND_KEYS_SIZE);
// Read the OTP/SEEPROM dump.
// If it is not included in the NAND image, get a path to the dump and read key data from it.
if (image_size == NAND_BIN_SIZE)
{
const std::string otp_dump_path = get_otp_dump_path();
if (otp_dump_path.empty())
return false;
File::IOFile keys_file{otp_dump_path, "rb"};
return keys_file.ReadBytes(m_nand_keys.data(), NAND_KEYS_SIZE);
}
// Otherwise, just read the key data from the NAND image.
return file.ReadBytes(m_nand_keys.data(), NAND_KEYS_SIZE);
}
bool NANDImporter::FindSuperblock()
{
constexpr size_t NAND_SUPERBLOCK_START = 0x1fc00000;
// There are 16 superblocks, choose the highest/newest version
for (int i = 0; i < 16; i++)
{
auto superblock = std::make_unique<NANDSuperblock>();
std::memcpy(superblock.get(), &m_nand[NAND_SUPERBLOCK_START + i * sizeof(NANDSuperblock)],
sizeof(NANDSuperblock));
if (std::memcmp(superblock->magic, "SFFS", 4) != 0)
{
ERROR_LOG_FMT(DISCIO, "Superblock #{} does not exist", i);
continue;
}
INFO_LOG_FMT(DISCIO, "Superblock #{} has version {:#x}", i, superblock->version);
if (!m_superblock || superblock->version > m_superblock->version)
m_superblock = std::move(superblock);
}
if (!m_superblock)
{
PanicAlertFmtT("This file does not contain a valid Wii filesystem.");
return false;
}
INFO_LOG_FMT(DISCIO, "Using superblock version {:#x}", m_superblock->version);
return true;
}
std::string NANDImporter::GetPath(const NANDFSTEntry& entry, const std::string& parent_path)
{
std::string name(entry.name, strnlen(entry.name, sizeof(NANDFSTEntry::name)));
if (name.front() == '/' || parent_path.back() == '/')
return parent_path + name;
return parent_path + '/' + name;
}
void NANDImporter::ProcessEntry(u16 entry_number, const std::string& parent_path)
{
while (entry_number != 0xffff)
{
const NANDFSTEntry entry = m_superblock->fst[entry_number];
const std::string path = GetPath(entry, parent_path);
INFO_LOG_FMT(DISCIO, "Entry: {} Path: {}", entry, path);
m_update_callback();
Type type = static_cast<Type>(entry.mode & 3);
if (type == Type::File)
{
std::vector<u8> data = GetEntryData(entry);
File::IOFile file(m_nand_root + path, "wb");
file.WriteBytes(data.data(), data.size());
}
else if (type == Type::Directory)
{
File::CreateDir(m_nand_root + path);
ProcessEntry(entry.sub, path);
}
else
{
ERROR_LOG_FMT(DISCIO, "Ignoring unknown entry type for {}", entry);
}
entry_number = entry.sib;
}
}
std::vector<u8> NANDImporter::GetEntryData(const NANDFSTEntry& entry)
{
constexpr size_t NAND_FAT_BLOCK_SIZE = 0x4000;
u16 sub = entry.sub;
size_t remaining_bytes = entry.size;
std::vector<u8> data{};
data.reserve(remaining_bytes);
auto block = std::make_unique<u8[]>(NAND_FAT_BLOCK_SIZE);
while (remaining_bytes > 0)
{
m_aes_ctx->CryptIvZero(&m_nand[NAND_FAT_BLOCK_SIZE * sub], block.get(), NAND_FAT_BLOCK_SIZE);
size_t size = std::min(remaining_bytes, NAND_FAT_BLOCK_SIZE);
data.insert(data.end(), block.get(), block.get() + size);
remaining_bytes -= size;
sub = m_superblock->fat[sub];
}
return data;
}
bool NANDImporter::ExtractCertificates()
{
const std::string content_dir = m_nand_root + "/title/00000001/0000000d/content/";
File::IOFile tmd_file(content_dir + "title.tmd", "rb");
std::vector<u8> tmd_bytes(tmd_file.GetSize());
if (!tmd_file.ReadBytes(tmd_bytes.data(), tmd_bytes.size()))
{
ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Could not read IOS13 TMD");
return false;
}
IOS::ES::TMDReader tmd(std::move(tmd_bytes));
IOS::ES::Content content_metadata;
if (!tmd.GetContent(tmd.GetBootIndex(), &content_metadata))
{
ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Could not get content ID from TMD");
return false;
}
File::IOFile content_file(content_dir + fmt::format("{:08x}.app", content_metadata.id), "rb");
std::vector<u8> content_bytes(content_file.GetSize());
if (!content_file.ReadBytes(content_bytes.data(), content_bytes.size()))
{
ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Could not read IOS13 contents");
return false;
}
struct PEMCertificate
{
std::string_view filename;
std::array<u8, 4> search_bytes;
};
static constexpr std::array<PEMCertificate, 3> certificates{{
{"/clientca.pem", {{0x30, 0x82, 0x03, 0xE9}}},
{"/clientcakey.pem", {{0x30, 0x82, 0x02, 0x5D}}},
{"/rootca.pem", {{0x30, 0x82, 0x03, 0x7D}}},
}};
for (const PEMCertificate& certificate : certificates)
{
const auto search_result =
std::search(content_bytes.begin(), content_bytes.end(), certificate.search_bytes.begin(),
certificate.search_bytes.end());
if (search_result == content_bytes.end())
{
ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Could not find offset for certficate '{}'",
certificate.filename);
return false;
}
const std::string pem_file_path = m_nand_root + std::string(certificate.filename);
const ptrdiff_t certificate_offset = std::distance(content_bytes.begin(), search_result);
const u16 certificate_size = Common::swap16(&content_bytes[certificate_offset - 2]);
INFO_LOG_FMT(DISCIO, "ExtractCertificates: '{}' offset: {:#x} size: {:#x}",
certificate.filename, certificate_offset, certificate_size);
File::IOFile pem_file(pem_file_path, "wb");
if (!pem_file.WriteBytes(&content_bytes[certificate_offset], certificate_size))
{
ERROR_LOG_FMT(DISCIO, "ExtractCertificates: Unable to write to file {}", pem_file_path);
return false;
}
}
return true;
}
void NANDImporter::ExportKeys()
{
constexpr size_t NAND_AES_KEY_OFFSET = 0x158;
m_aes_ctx = Common::AES::CreateContextDecrypt(&m_nand_keys[NAND_AES_KEY_OFFSET]);
const std::string file_path = m_nand_root + "/keys.bin";
File::IOFile file(file_path, "wb");
if (!file.WriteBytes(m_nand_keys.data(), NAND_KEYS_SIZE))
PanicAlertFmtT("Unable to write to file {0}", file_path);
}
} // namespace DiscIO