#include #include #include #include //process CPU instructions... void cpu_set_flags(cpu_context *ctx, u8 z, u8 n, u8 h, u8 c){ if (z != -1){ BIT_SET(ctx->regs.f, 7, z) } if (n != -1){ BIT_SET(ctx->regs.f, 6, n) } if (h != -1){ BIT_SET(ctx->regs.f, 5, h) } if (c != -1){ BIT_SET(ctx->regs.f, 4, c) } } static void proc_none(cpu_context *ctx) { printf("INVALID INSTRUCTION!\n"); exit(-7); } static void proc_nop(cpu_context *ctx) { } static void proc_pop(cpu_context *ctx) { u16 n = stack_pop16(); cpu_set_reg(ctx->cur_inst->reg_1, n); emu_cycles(2); if (ctx->cur_inst->reg_1 == RT_AF) { cpu_set_reg(ctx->cur_inst->reg_1, n & 0xFFF0); } } static void proc_push(cpu_context *ctx) { stack_push16(cpu_read_reg(ctx->cur_inst->reg_1)); emu_cycles(2); } static void proc_ldh(cpu_context *ctx) { if (!ctx->dest_is_mem) { cpu_set_reg(ctx->cur_inst->reg_1, bus_read(0XFF00 | ctx->fetched_data)); } else { bus_write(0xFF00 | ctx->mem_dest, ctx->cur_inst->reg_2); } emu_cycles(1); } static void proc_xor(cpu_context *ctx) { ctx->regs.a ^= ctx->fetched_data & 0XFF; cpu_set_flags(ctx, ctx->regs.a == 0, 0, 0, 0); } static void proc_di(cpu_context *ctx) { ctx->int_master_enabled = false; } static void proc_ld(cpu_context *ctx) { if(ctx->dest_is_mem) { if(ctx->cur_inst->reg_2 >= RT_AF) { bus_write16(ctx->mem_dest, ctx->fetched_data); emu_cycles(1); } else { bus_write(ctx->mem_dest, ctx->fetched_data); emu_cycles(1); } return; } if (ctx->cur_inst->mode == AM_HL_SPR) { u8 hflag = (cpu_read_reg(ctx->cur_inst->reg_2) & 0xF) + (ctx->fetched_data & 0xF) >= 0x10; u8 cflag = (cpu_read_reg(ctx->cur_inst->reg_2) & 0xFF) + (ctx->fetched_data & 0xFF) >= 0x100; cpu_set_flags(ctx, 0, 0, hflag, cflag); cpu_set_reg(ctx->cur_inst->reg_1, cpu_read_reg(ctx->cur_inst->reg_2) + (char)ctx->fetched_data); } cpu_set_reg(ctx->cur_inst->reg_1, ctx->fetched_data); } static bool check_condition(cpu_context *ctx) { bool z = CPU_FLAG_Z; bool c = CPU_FLAG_C; switch(ctx->cur_inst->cond) { case CT_NONE: return true; case CT_C: return c; case CT_NC: return !c; case CT_Z: return z; case CT_NZ: return !z; } return false; } static void goto_addr(cpu_context *ctx, u16 addr, bool pushpc){ if (check_condition(ctx)) { if(pushpc) { stack_push16(ctx->regs.pc); emu_cycles(2); } ctx->regs.pc = addr; emu_cycles(1); } } static void proc_jp(cpu_context *ctx) { goto_addr(ctx, ctx->fetched_data, false); } static void proc_call(cpu_context *ctx) { goto_addr(ctx, ctx->fetched_data, true); } static void proc_rst(cpu_context *ctx) { goto_addr(ctx, ctx->cur_inst->param, true); } static void proc_ret(cpu_context *ctx) { if (ctx->cur_inst->cond != CT_NONE) { emu_cycles(1); } if(check_condition(ctx)){ u16 lo = stack_pop(); emu_cycles(1); u16 hi = stack_pop(); emu_cycles(1); u16 n = (hi << 8) | lo; ctx->regs.pc = n; emu_cycles(1); } } static void proc_reti(cpu_context *ctx) { ctx->int_master_enabled = true; proc_ret(ctx); } static void proc_jr(cpu_context *ctx) { char rel = (char)(ctx->fetched_data & 0XFF); u16 addr = ctx->regs.pc + rel; goto_addr(ctx, addr, false); } IN_PROC processors[] = { [IN_NONE] = proc_none, [IN_NOP] = proc_nop, [IN_LD] = proc_ld, [IN_JP] = proc_jp, [IN_DI] = proc_di, [IN_XOR] = proc_xor, [IN_LDH] = proc_ldh, [IN_POP] = proc_pop, [IN_PUSH] = proc_push, [IN_CALL] = proc_call, [IN_JR] = proc_jr, [IN_RET] = proc_ret, [IN_RETI] = proc_reti, [IN_RST] = proc_rst }; IN_PROC inst_get_processor(in_type type) { return processors[type]; }