melonDS/src/GPU3D_Soft.cpp

2111 lines
60 KiB
C++
Raw Normal View History

2017-02-10 08:50:26 -07:00
/*
2018-09-14 18:32:13 -06:00
Copyright 2016-2019 StapleButter
2017-02-10 08:50:26 -07:00
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
2017-03-01 16:49:44 -07:00
#include "GPU.h"
#include "Config.h"
#include "Platform.h"
2017-02-10 08:50:26 -07:00
namespace GPU3D
{
namespace SoftRenderer
{
// buffer dimensions are 258x194 to add a offscreen 1px border
// which simplifies edge marking tests
// buffer is duplicated to keep track of the two topmost pixels
// TODO: check if the hardware can accidentally plot pixels
// offscreen in that border
const int ScanlineWidth = 258;
const int NumScanlines = 194;
const int BufferSize = ScanlineWidth * NumScanlines;
const int FirstPixelOffset = ScanlineWidth + 1;
u32 ColorBuffer[BufferSize * 2];
u32 DepthBuffer[BufferSize * 2];
u32 AttrBuffer[BufferSize * 2];
2017-03-12 17:45:26 -06:00
// attribute buffer:
// bit0-3: edge flags (left/right/top/bottom)
// bit4: backfacing flag
// bit8-12: antialiasing alpha
// bit15: fog enable
// bit16-21: polygon ID for translucent pixels
// bit22: translucent flag
// bit24-29: polygon ID for opaque pixels
2017-02-10 08:50:26 -07:00
2017-05-22 14:29:21 -06:00
u8 StencilBuffer[256*2];
2017-05-25 20:00:15 -06:00
bool PrevIsShadowMask;
// threading
void* RenderThread;
bool RenderThreadRunning;
2017-05-25 17:22:11 -06:00
bool RenderThreadRendering;
void* Sema_RenderStart;
void* Sema_RenderDone;
void* Sema_ScanlineCount;
void RenderThreadFunc();
2017-02-10 08:50:26 -07:00
void StopRenderThread()
{
if (RenderThreadRunning)
{
RenderThreadRunning = false;
Platform::Semaphore_Post(Sema_RenderStart);
Platform::Thread_Wait(RenderThread);
Platform::Thread_Free(RenderThread);
}
}
void SetupRenderThread()
{
if (Config::Threaded3D)
{
if (!RenderThreadRunning)
{
RenderThreadRunning = true;
RenderThread = Platform::Thread_Create(RenderThreadFunc);
}
if (RenderThreadRendering)
Platform::Semaphore_Wait(Sema_RenderDone);
Platform::Semaphore_Reset(Sema_RenderStart);
Platform::Semaphore_Reset(Sema_ScanlineCount);
Platform::Semaphore_Post(Sema_RenderStart);
}
else
{
StopRenderThread();
}
}
2017-02-10 08:50:26 -07:00
bool Init()
{
Sema_RenderStart = Platform::Semaphore_Create();
Sema_RenderDone = Platform::Semaphore_Create();
Sema_ScanlineCount = Platform::Semaphore_Create();
RenderThreadRunning = false;
2017-05-25 17:22:11 -06:00
RenderThreadRendering = false;
return true;
2017-02-10 08:50:26 -07:00
}
void DeInit()
{
StopRenderThread();
2017-05-25 17:22:11 -06:00
Platform::Semaphore_Free(Sema_RenderStart);
Platform::Semaphore_Free(Sema_RenderDone);
Platform::Semaphore_Free(Sema_ScanlineCount);
2017-02-10 08:50:26 -07:00
}
void Reset()
{
memset(ColorBuffer, 0, 256*192 * 4);
2017-02-13 19:29:02 -07:00
memset(DepthBuffer, 0, 256*192 * 4);
2017-03-12 17:45:26 -06:00
memset(AttrBuffer, 0, 256*192 * 4);
2017-05-25 20:00:15 -06:00
PrevIsShadowMask = false;
SetupRenderThread();
2017-02-10 08:50:26 -07:00
}
2017-04-21 14:40:15 -06:00
// Notes on the interpolator:
//
// This is a theory on how the DS hardware interpolates values. It matches hardware output
// in the tests I did, but the hardware may be doing it differently. You never know.
//
// Assuming you want to perspective-correctly interpolate a variable named A across two points
// in a typical rasterizer, you would calculate A/W and 1/W at each point, interpolate linearly,
// then divide A/W by 1/W to recover the correct A value.
//
// The DS GPU approximates interpolation by calculating a perspective-correct interpolation
// between 0 and 1, then using the result as a factor to linearly interpolate the actual
// vertex attributes. The factor has 9 bits of precision when interpolating along Y and
// 8 bits along X.
//
// There's a special path for when the two W values are equal: it directly does linear
// interpolation, avoiding precision loss from the aforementioned approximation.
// Which is desirable when using the GPU to draw 2D graphics.
template<int dir>
2017-04-21 14:40:15 -06:00
class Interpolator
{
public:
Interpolator() {}
Interpolator(s32 x0, s32 x1, s32 w0, s32 w1)
2017-04-21 14:40:15 -06:00
{
Setup(x0, x1, w0, w1);
2017-04-21 14:40:15 -06:00
}
void Setup(s32 x0, s32 x1, s32 w0, s32 w1)
2017-04-21 14:40:15 -06:00
{
this->x0 = x0;
this->x1 = x1;
this->xdiff = x1 - x0;
// calculate reciprocals for linear mode and Z interpolation
// TODO eventually: use a faster reciprocal function?
if (this->xdiff != 0)
this->xrecip = (1<<30) / this->xdiff;
else
this->xrecip = 0;
this->xrecip_z = this->xrecip >> 8;
// linear mode is used if both W values are equal and have
// low-order bits cleared (0-6 along X, 1-6 along Y)
u32 mask = dir ? 0x7E : 0x7F;
if ((w0 == w1) && !(w0 & mask) && !(w1 & mask))
this->linear = true;
else
this->linear = false;
if (dir)
{
// along Y
if ((w0 & 0x1) && !(w1 & 0x1))
{
this->w0n = w0 - 1;
this->w0d = w0 + 1;
this->w1d = w1;
}
else
{
this->w0n = w0 & 0xFFFE;
this->w0d = w0 & 0xFFFE;
this->w1d = w1 & 0xFFFE;
}
this->shift = 9;
}
else
{
// along X
this->w0n = w0;
this->w0d = w0;
this->w1d = w1;
this->shift = 8;
}
2017-04-21 14:40:15 -06:00
}
void SetX(s32 x)
{
x -= x0;
this->x = x;
if (xdiff != 0 && !linear)
2017-04-21 14:40:15 -06:00
{
s64 num = ((s64)x * w0n) << shift;
s32 den = (x * w0d) + ((xdiff-x) * w1d);
// this seems to be a proper division on hardware :/
// I haven't been able to find cases that produce imperfect output
if (den == 0) yfactor = 0;
else yfactor = (s32)(num / den);
2017-04-21 14:40:15 -06:00
}
}
s32 Interpolate(s32 y0, s32 y1)
{
if (xdiff == 0 || y0 == y1) return y0;
2017-04-21 14:40:15 -06:00
if (!linear)
{
// perspective-correct approx. interpolation
if (y0 < y1)
return y0 + (((y1-y0) * yfactor) >> shift);
else
return y1 + (((y0-y1) * ((1<<shift)-yfactor)) >> shift);
}
else
{
// linear interpolation
// checkme: the rounding bias there (3<<24) is a guess
if (y0 < y1)
return y0 + ((((s64)(y1-y0) * x * xrecip) + (3<<24)) >> 30);
else
return y1 + ((((s64)(y0-y1) * (xdiff-x) * xrecip) + (3<<24)) >> 30);
}
2017-04-21 14:40:15 -06:00
}
s32 InterpolateZ(s32 z0, s32 z1, bool wbuffer)
2017-04-21 14:40:15 -06:00
{
if (xdiff == 0 || z0 == z1) return z0;
2017-04-21 14:40:15 -06:00
if (wbuffer)
{
// W-buffering: perspective-correct approx. interpolation
if (z0 < z1)
return z0 + (((s64)(z1-z0) * yfactor) >> shift);
else
return z1 + (((s64)(z0-z1) * ((1<<shift)-yfactor)) >> shift);
}
else
{
// Z-buffering: linear interpolation
// still doesn't quite match hardware...
s32 base, disp, factor;
if (z0 < z1)
{
base = z0;
disp = z1 - z0;
factor = x;
}
else
{
base = z1;
disp = z0 - z1,
factor = xdiff - x;
}
if (dir)
{
int shift = 0;
while (disp > 0x3FF)
{
disp >>= 1;
shift++;
}
return base + ((((s64)disp * factor * xrecip_z) >> 22) << shift);
}
else
{
disp >>= 9;
return base + (((s64)disp * factor * xrecip_z) >> 13);
}
}
2017-04-21 14:40:15 -06:00
}
private:
s32 x0, x1, xdiff, x;
2017-04-21 14:40:15 -06:00
int shift;
bool linear;
s32 xrecip, xrecip_z;
s32 w0n, w0d, w1d;
2017-04-21 14:40:15 -06:00
u32 yfactor;
2017-04-21 14:40:15 -06:00
};
template<int side>
2017-04-21 14:40:15 -06:00
class Slope
{
public:
Slope() {}
s32 SetupDummy(s32 x0)
2017-04-21 14:40:15 -06:00
{
if (side)
{
dx = -0x40000;
2017-04-21 14:40:15 -06:00
x0--;
}
else
{
dx = 0;
}
this->x0 = x0;
this->xmin = x0;
this->xmax = x0;
Increment = 0;
XMajor = false;
Interp.Setup(0, 0, 0, 0);
2017-04-21 14:40:15 -06:00
Interp.SetX(0);
xcov_incr = 0;
2017-04-21 14:40:15 -06:00
return x0;
}
s32 Setup(s32 x0, s32 x1, s32 y0, s32 y1, s32 w0, s32 w1, s32 y)
2017-04-21 14:40:15 -06:00
{
this->x0 = x0;
this->y = y;
2017-04-21 14:40:15 -06:00
if (x1 > x0)
{
this->xmin = x0;
this->xmax = x1-1;
this->Negative = false;
2017-04-21 14:40:15 -06:00
}
else if (x1 < x0)
{
this->xmin = x1;
this->xmax = x0-1;
this->Negative = true;
2017-04-21 14:40:15 -06:00
}
else
{
this->xmin = x0;
if (side) this->xmin--;
this->xmax = this->xmin;
this->Negative = false;
2017-04-21 14:40:15 -06:00
}
xlen = xmax+1 - xmin;
ylen = y1 - y0;
// slope increment has a 18-bit fractional part
// note: for some reason, x/y isn't calculated directly,
// instead, 1/y is calculated and then multiplied by x
// TODO: this is still not perfect (see for example x=169 y=33)
if (ylen == 0)
2017-04-21 14:40:15 -06:00
Increment = 0;
else if (ylen == xlen)
Increment = 0x40000;
2017-04-21 14:40:15 -06:00
else
{
s32 yrecip = (1<<18) / ylen;
Increment = (x1-x0) * yrecip;
if (Increment < 0) Increment = -Increment;
2017-04-21 14:40:15 -06:00
}
XMajor = (Increment > 0x40000);
2017-04-21 14:40:15 -06:00
if (side)
{
// right
if (XMajor) dx = Negative ? (0x20000 + 0x40000) : (Increment - 0x20000);
else if (Increment != 0) dx = Negative ? 0x40000 : 0;
else dx = -0x40000;
2017-04-21 14:40:15 -06:00
}
else
{
// left
if (XMajor) dx = Negative ? ((Increment - 0x20000) + 0x40000) : 0x20000;
else if (Increment != 0) dx = Negative ? 0x40000 : 0;
2017-04-21 14:40:15 -06:00
else dx = 0;
}
dx += (y - y0) * Increment;
s32 x = XVal();
2017-04-21 14:40:15 -06:00
if (XMajor)
{
if (side) Interp.Setup(x0-1, x1-1, w0, w1); // checkme
else Interp.Setup(x0, x1, w0, w1);
Interp.SetX(x);
// used for calculating AA coverage
xcov_incr = (ylen << 10) / xlen;
}
else
{
Interp.Setup(y0, y1, w0, w1);
Interp.SetX(y);
2017-04-21 14:40:15 -06:00
}
return x;
}
2017-04-21 14:40:15 -06:00
s32 Step()
{
dx += Increment;
y++;
s32 x = XVal();
if (XMajor)
{
Interp.SetX(x);
}
else
{
Interp.SetX(y);
}
2017-04-21 14:40:15 -06:00
return x;
}
s32 XVal()
{
s32 ret;
if (Negative) ret = x0 - (dx >> 18);
else ret = x0 + (dx >> 18);
2017-04-21 14:40:15 -06:00
if (ret < xmin) ret = xmin;
else if (ret > xmax) ret = xmax;
return ret;
}
void EdgeParams_XMajor(s32* length, s32* coverage)
{
if (side ^ Negative)
*length = (dx >> 18) - ((dx-Increment) >> 18);
else
*length = ((dx+Increment) >> 18) - (dx >> 18);
// for X-major edges, we return the coverage
// for the first pixel, and the increment for
// further pixels on the same scanline
s32 startx = dx >> 18;
if (Negative) startx = xlen - startx;
if (side) startx = startx - *length + 1;
s32 startcov = (((startx << 10) + 0x1FF) * ylen) / xlen;
*coverage = (1<<31) | ((startcov & 0x3FF) << 12) | (xcov_incr & 0x3FF);
}
void EdgeParams_YMajor(s32* length, s32* coverage)
{
*length = 1;
if (Increment == 0)
{
*coverage = 31;
}
else
{
2017-08-28 10:48:06 -06:00
s32 cov = ((dx >> 9) + (Increment >> 10)) >> 4;
if ((cov >> 5) != (dx >> 18)) cov = 31;
cov &= 0x1F;
if (!(side ^ Negative)) cov = 0x1F - cov;
*coverage = cov;
}
}
void EdgeParams(s32* length, s32* coverage)
{
if (XMajor)
return EdgeParams_XMajor(length, coverage);
else
return EdgeParams_YMajor(length, coverage);
}
2017-04-21 14:40:15 -06:00
s32 Increment;
bool Negative;
bool XMajor;
Interpolator<1> Interp;
2017-04-21 14:40:15 -06:00
private:
s32 x0, xmin, xmax;
s32 xlen, ylen;
2017-04-21 14:40:15 -06:00
s32 dx;
s32 y;
s32 xcov_incr;
s32 ycoverage, ycov_incr;
2017-04-21 14:40:15 -06:00
};
2017-05-21 12:14:03 -06:00
typedef struct
{
Polygon* PolyData;
Slope<0> SlopeL;
Slope<1> SlopeR;
2017-05-21 12:14:03 -06:00
s32 XL, XR;
u32 CurVL, CurVR;
u32 NextVL, NextVR;
} RendererPolygon;
RendererPolygon PolygonList[2048];
2017-04-21 14:40:15 -06:00
void TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha)
2017-02-13 19:29:02 -07:00
{
2017-03-01 16:49:44 -07:00
u32 vramaddr = (texparam & 0xFFFF) << 3;
2017-05-21 12:14:03 -06:00
s32 width = 8 << ((texparam >> 20) & 0x7);
s32 height = 8 << ((texparam >> 23) & 0x7);
2017-03-01 16:49:44 -07:00
s >>= 4;
t >>= 4;
// texture wrapping
// TODO: optimize this somehow
2017-04-21 14:40:15 -06:00
// testing shows that it's hardly worth optimizing, actually
if (texparam & (1<<16))
{
if (texparam & (1<<18))
{
if (s & width) s = (width-1) - (s & (width-1));
else s = (s & (width-1));
}
else
s &= width-1;
}
else
{
if (s < 0) s = 0;
else if (s >= width) s = width-1;
}
if (texparam & (1<<17))
{
if (texparam & (1<<19))
{
if (t & height) t = (height-1) - (t & (height-1));
else t = (t & (height-1));
}
else
t &= height-1;
}
else
{
if (t < 0) t = 0;
else if (t >= height) t = height-1;
}
2017-03-01 16:49:44 -07:00
u8 alpha0;
if (texparam & (1<<29)) alpha0 = 0;
else alpha0 = 31;
2017-03-01 16:49:44 -07:00
switch ((texparam >> 26) & 0x7)
{
case 1: // A3I5
2017-03-01 16:49:44 -07:00
{
vramaddr += ((t * width) + s);
2017-03-01 16:49:44 -07:00
u8 pixel = GPU::ReadVRAM_Texture<u8>(vramaddr);
texpal <<= 4;
*color = GPU::ReadVRAM_TexPal<u16>(texpal + ((pixel&0x1F)<<1));
*alpha = ((pixel >> 3) & 0x1C) + (pixel >> 6);
}
break;
case 2: // 4-color
{
vramaddr += (((t * width) + s) >> 2);
u8 pixel = GPU::ReadVRAM_Texture<u8>(vramaddr);
pixel >>= ((s & 0x3) << 1);
pixel &= 0x3;
2017-03-01 16:49:44 -07:00
texpal <<= 3;
*color = GPU::ReadVRAM_TexPal<u16>(texpal + (pixel<<1));
*alpha = (pixel==0) ? alpha0 : 31;
2017-03-01 16:49:44 -07:00
}
break;
case 3: // 16-color
2017-03-01 16:49:44 -07:00
{
vramaddr += (((t * width) + s) >> 1);
2017-03-01 16:49:44 -07:00
u8 pixel = GPU::ReadVRAM_Texture<u8>(vramaddr);
if (s & 0x1) pixel >>= 4;
else pixel &= 0xF;
2017-03-01 16:49:44 -07:00
texpal <<= 4;
*color = GPU::ReadVRAM_TexPal<u16>(texpal + (pixel<<1));
*alpha = (pixel==0) ? alpha0 : 31;
}
break;
case 4: // 256-color
{
vramaddr += ((t * width) + s);
u8 pixel = GPU::ReadVRAM_Texture<u8>(vramaddr);
texpal <<= 4;
*color = GPU::ReadVRAM_TexPal<u16>(texpal + (pixel<<1));
*alpha = (pixel==0) ? alpha0 : 31;
}
break;
case 5: // compressed
{
vramaddr += ((t & 0x3FC) * (width>>2)) + (s & 0x3FC);
vramaddr += (t & 0x3);
u32 slot1addr = 0x20000 + ((vramaddr & 0x1FFFC) >> 1);
if (vramaddr >= 0x40000)
slot1addr += 0x10000;
u8 val = GPU::ReadVRAM_Texture<u8>(vramaddr);
val >>= (2 * (s & 0x3));
u16 palinfo = GPU::ReadVRAM_Texture<u16>(slot1addr);
u32 paloffset = (palinfo & 0x3FFF) << 2;
texpal <<= 4;
switch (val & 0x3)
{
case 0:
*color = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset);
*alpha = 31;
break;
case 1:
*color = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset + 2);
*alpha = 31;
break;
case 2:
if ((palinfo >> 14) == 1)
{
u16 color0 = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset);
u16 color1 = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset + 2);
u32 r0 = color0 & 0x001F;
u32 g0 = color0 & 0x03E0;
u32 b0 = color0 & 0x7C00;
u32 r1 = color1 & 0x001F;
u32 g1 = color1 & 0x03E0;
u32 b1 = color1 & 0x7C00;
u32 r = (r0 + r1) >> 1;
u32 g = ((g0 + g1) >> 1) & 0x03E0;
u32 b = ((b0 + b1) >> 1) & 0x7C00;
*color = r | g | b;
}
else if ((palinfo >> 14) == 3)
{
u16 color0 = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset);
u16 color1 = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset + 2);
u32 r0 = color0 & 0x001F;
u32 g0 = color0 & 0x03E0;
u32 b0 = color0 & 0x7C00;
u32 r1 = color1 & 0x001F;
u32 g1 = color1 & 0x03E0;
u32 b1 = color1 & 0x7C00;
u32 r = (r0*5 + r1*3) >> 3;
u32 g = ((g0*5 + g1*3) >> 3) & 0x03E0;
u32 b = ((b0*5 + b1*3) >> 3) & 0x7C00;
*color = r | g | b;
}
else
*color = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset + 4);
*alpha = 31;
break;
case 3:
if ((palinfo >> 14) == 2)
{
*color = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset + 6);
*alpha = 31;
}
else if ((palinfo >> 14) == 3)
{
u16 color0 = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset);
u16 color1 = GPU::ReadVRAM_TexPal<u16>(texpal + paloffset + 2);
u32 r0 = color0 & 0x001F;
u32 g0 = color0 & 0x03E0;
u32 b0 = color0 & 0x7C00;
u32 r1 = color1 & 0x001F;
u32 g1 = color1 & 0x03E0;
u32 b1 = color1 & 0x7C00;
u32 r = (r0*3 + r1*5) >> 3;
u32 g = ((g0*3 + g1*5) >> 3) & 0x03E0;
u32 b = ((b0*3 + b1*5) >> 3) & 0x7C00;
*color = r | g | b;
*alpha = 31;
}
else
{
*color = 0;
*alpha = 0;
}
break;
}
}
break;
case 6: // A5I3
{
vramaddr += ((t * width) + s);
u8 pixel = GPU::ReadVRAM_Texture<u8>(vramaddr);
texpal <<= 4;
*color = GPU::ReadVRAM_TexPal<u16>(texpal + ((pixel&0x7)<<1));
*alpha = (pixel >> 3);
2017-03-01 16:49:44 -07:00
}
break;
case 7: // direct color
{
vramaddr += (((t * width) + s) << 1);
*color = GPU::ReadVRAM_Texture<u16>(vramaddr);
*alpha = (*color & 0x8000) ? 31 : 0;
}
2017-03-01 16:49:44 -07:00
break;
}
}
// depth test is 'less or equal' instead of 'less than' under the following conditions:
// * when drawing a front-facing pixel over an opaque back-facing pixel
// * when drawing wireframe edges, under certain conditions (TODO)
bool DepthTest_Equal(s32 dstz, s32 z, u32 dstattr)
{
s32 diff = dstz - z;
if ((u32)(diff + 0xFF) <= 0x1FE) // range is +-0xFF
return true;
return false;
}
bool DepthTest_LessThan(s32 dstz, s32 z, u32 dstattr)
2017-03-01 16:49:44 -07:00
{
if (z < dstz)
return true;
return false;
}
bool DepthTest_LessThan_FrontFacing(s32 dstz, s32 z, u32 dstattr)
{
if ((dstattr & 0x00400010) == 0x00000010) // opaque, back facing
2017-02-13 19:29:02 -07:00
{
if (z <= dstz)
2017-03-12 17:45:26 -06:00
return true;
2017-02-13 19:29:02 -07:00
}
else
{
if (z < dstz)
return true;
}
2017-02-13 19:29:02 -07:00
2017-03-12 17:45:26 -06:00
return false;
}
2017-02-13 19:29:02 -07:00
u32 AlphaBlend(u32 srccolor, u32 dstcolor, u32 alpha)
{
u32 dstalpha = dstcolor >> 24;
if (dstalpha == 0)
return srccolor;
u32 srcR = srccolor & 0x3F;
u32 srcG = (srccolor >> 8) & 0x3F;
u32 srcB = (srccolor >> 16) & 0x3F;
if (RenderDispCnt & (1<<3))
{
u32 dstR = dstcolor & 0x3F;
u32 dstG = (dstcolor >> 8) & 0x3F;
u32 dstB = (dstcolor >> 16) & 0x3F;
alpha++;
srcR = ((srcR * alpha) + (dstR * (32-alpha))) >> 5;
srcG = ((srcG * alpha) + (dstG * (32-alpha))) >> 5;
srcB = ((srcB * alpha) + (dstB * (32-alpha))) >> 5;
alpha--;
}
if (alpha > dstalpha)
dstalpha = alpha;
return srcR | (srcG << 8) | (srcB << 16) | (dstalpha << 24);
}
2017-04-13 11:53:09 -06:00
u32 RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t)
2017-03-12 17:45:26 -06:00
{
u8 r, g, b, a;
2017-03-01 16:49:44 -07:00
u32 blendmode = (polygon->Attr >> 4) & 0x3;
u32 polyalpha = (polygon->Attr >> 16) & 0x1F;
bool wireframe = (polyalpha == 0);
2017-03-01 16:49:44 -07:00
if (blendmode == 2)
{
if (RenderDispCnt & (1<<1))
{
// highlight mode: color is calculated normally
// except all vertex color components are set
// to the red component
// the toon color is added to the final color
vg = vr;
vb = vr;
}
else
{
// toon mode: vertex color is replaced by toon color
u16 tooncolor = RenderToonTable[vr >> 1];
vr = (tooncolor << 1) & 0x3E; if (vr) vr++;
vg = (tooncolor >> 4) & 0x3E; if (vg) vg++;
vb = (tooncolor >> 9) & 0x3E; if (vb) vb++;
}
}
if ((RenderDispCnt & (1<<0)) && (((polygon->TexParam >> 26) & 0x7) != 0))
{
2017-03-01 16:49:44 -07:00
u8 tr, tg, tb;
u16 tcolor; u8 talpha;
TextureLookup(polygon->TexParam, polygon->TexPalette, s, t, &tcolor, &talpha);
tr = (tcolor << 1) & 0x3E; if (tr) tr++;
tg = (tcolor >> 4) & 0x3E; if (tg) tg++;
tb = (tcolor >> 9) & 0x3E; if (tb) tb++;
2017-03-01 16:49:44 -07:00
2017-04-21 14:40:15 -06:00
if (blendmode & 0x1)
{
// decal
if (talpha == 0)
{
r = vr;
g = vg;
b = vb;
}
else if (talpha == 31)
{
r = tr;
g = tg;
b = tb;
}
else
{
r = ((tr * talpha) + (vr * (31-talpha))) >> 5;
g = ((tg * talpha) + (vg * (31-talpha))) >> 5;
b = ((tb * talpha) + (vb * (31-talpha))) >> 5;
}
a = polyalpha;
}
else
{
// modulate
r = ((tr+1) * (vr+1) - 1) >> 6;
g = ((tg+1) * (vg+1) - 1) >> 6;
b = ((tb+1) * (vb+1) - 1) >> 6;
a = ((talpha+1) * (polyalpha+1) - 1) >> 5;
}
2017-03-01 16:49:44 -07:00
}
else
{
r = vr;
g = vg;
b = vb;
a = polyalpha;
2017-03-01 16:49:44 -07:00
}
if ((blendmode == 2) && (RenderDispCnt & (1<<1)))
{
u16 tooncolor = RenderToonTable[vr >> 1];
vr = (tooncolor << 1) & 0x3E; if (vr) vr++;
vg = (tooncolor >> 4) & 0x3E; if (vg) vg++;
vb = (tooncolor >> 9) & 0x3E; if (vb) vb++;
r += vr;
g += vg;
b += vb;
if (r > 63) r = 63;
if (g > 63) g = 63;
if (b > 63) b = 63;
2017-04-13 11:53:09 -06:00
}
// checkme: can wireframe polygons use texture alpha?
if (wireframe) a = 31;
2017-03-12 17:45:26 -06:00
return r | (g << 8) | (b << 16) | (a << 24);
2017-02-13 19:29:02 -07:00
}
void PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 shadow)
{
u32 dstattr = AttrBuffer[pixeladdr];
u32 attr = (polyattr & 0xE0F0) | ((polyattr >> 8) & 0xFF0000) | (1<<22) | (dstattr & 0xFF001F0F);
if (shadow)
{
// for shadows, opaque pixels are also checked
if (dstattr & (1<<22))
{
if ((dstattr & 0x007F0000) == (attr & 0x007F0000))
return;
}
else
{
if ((dstattr & 0x3F000000) == (polyattr & 0x3F000000))
return;
}
}
else
{
// skip if translucent polygon IDs are equal
if ((dstattr & 0x007F0000) == (attr & 0x007F0000))
return;
}
// fog flag
if (!(dstattr & (1<<15)))
attr &= ~(1<<15);
color = AlphaBlend(color, ColorBuffer[pixeladdr], color>>24);
if (z != -1)
DepthBuffer[pixeladdr] = z;
ColorBuffer[pixeladdr] = color;
AttrBuffer[pixeladdr] = attr;
}
2017-05-21 12:14:03 -06:00
void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y)
{
Polygon* polygon = rp->PolyData;
while (y >= polygon->Vertices[rp->NextVL]->FinalPosition[1] && rp->CurVL != polygon->VBottom)
{
rp->CurVL = rp->NextVL;
if (polygon->FacingView)
{
rp->NextVL = rp->CurVL + 1;
if (rp->NextVL >= polygon->NumVertices)
rp->NextVL = 0;
}
else
{
rp->NextVL = rp->CurVL - 1;
if ((s32)rp->NextVL < 0)
rp->NextVL = polygon->NumVertices - 1;
}
}
rp->XL = rp->SlopeL.Setup(polygon->Vertices[rp->CurVL]->FinalPosition[0], polygon->Vertices[rp->NextVL]->FinalPosition[0],
polygon->Vertices[rp->CurVL]->FinalPosition[1], polygon->Vertices[rp->NextVL]->FinalPosition[1],
polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL], y);
2017-05-21 12:14:03 -06:00
}
void SetupPolygonRightEdge(RendererPolygon* rp, s32 y)
{
Polygon* polygon = rp->PolyData;
while (y >= polygon->Vertices[rp->NextVR]->FinalPosition[1] && rp->CurVR != polygon->VBottom)
{
rp->CurVR = rp->NextVR;
if (polygon->FacingView)
{
rp->NextVR = rp->CurVR - 1;
if ((s32)rp->NextVR < 0)
rp->NextVR = polygon->NumVertices - 1;
}
else
{
rp->NextVR = rp->CurVR + 1;
if (rp->NextVR >= polygon->NumVertices)
rp->NextVR = 0;
}
}
rp->XR = rp->SlopeR.Setup(polygon->Vertices[rp->CurVR]->FinalPosition[0], polygon->Vertices[rp->NextVR]->FinalPosition[0],
polygon->Vertices[rp->CurVR]->FinalPosition[1], polygon->Vertices[rp->NextVR]->FinalPosition[1],
polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR], y);
2017-05-21 12:14:03 -06:00
}
void SetupPolygon(RendererPolygon* rp, Polygon* polygon)
{
u32 nverts = polygon->NumVertices;
u32 vtop = polygon->VTop, vbot = polygon->VBottom;
s32 ytop = polygon->YTop, ybot = polygon->YBottom;
rp->PolyData = polygon;
rp->CurVL = vtop;
rp->CurVR = vtop;
if (polygon->FacingView)
{
rp->NextVL = rp->CurVL + 1;
if (rp->NextVL >= nverts) rp->NextVL = 0;
rp->NextVR = rp->CurVR - 1;
if ((s32)rp->NextVR < 0) rp->NextVR = nverts - 1;
}
else
{
rp->NextVL = rp->CurVL - 1;
if ((s32)rp->NextVL < 0) rp->NextVL = nverts - 1;
rp->NextVR = rp->CurVR + 1;
if (rp->NextVR >= nverts) rp->NextVR = 0;
}
if (ybot == ytop)
{
vtop = 0; vbot = 0;
int i;
i = 1;
if (polygon->Vertices[i]->FinalPosition[0] < polygon->Vertices[vtop]->FinalPosition[0]) vtop = i;
if (polygon->Vertices[i]->FinalPosition[0] > polygon->Vertices[vbot]->FinalPosition[0]) vbot = i;
i = nverts - 1;
if (polygon->Vertices[i]->FinalPosition[0] < polygon->Vertices[vtop]->FinalPosition[0]) vtop = i;
if (polygon->Vertices[i]->FinalPosition[0] > polygon->Vertices[vbot]->FinalPosition[0]) vbot = i;
rp->CurVL = vtop; rp->NextVL = vtop;
rp->CurVR = vbot; rp->NextVR = vbot;
rp->XL = rp->SlopeL.SetupDummy(polygon->Vertices[rp->CurVL]->FinalPosition[0]);
rp->XR = rp->SlopeR.SetupDummy(polygon->Vertices[rp->CurVR]->FinalPosition[0]);
2017-05-21 12:14:03 -06:00
}
else
{
SetupPolygonLeftEdge(rp, ytop);
SetupPolygonRightEdge(rp, ytop);
}
}
void RenderShadowMaskScanline(RendererPolygon* rp, s32 y)
2017-05-21 12:14:03 -06:00
{
Polygon* polygon = rp->PolyData;
u32 polyattr = (polygon->Attr & 0x3F008000);
if (!polygon->FacingView) polyattr |= (1<<4);
2017-05-21 12:14:03 -06:00
u32 polyalpha = (polygon->Attr >> 16) & 0x1F;
bool wireframe = (polyalpha == 0);
bool (*fnDepthTest)(s32 dstz, s32 z, u32 dstattr);
2017-05-21 12:14:03 -06:00
if (polygon->Attr & (1<<14))
fnDepthTest = DepthTest_Equal;
else if (polygon->FacingView)
fnDepthTest = DepthTest_LessThan_FrontFacing;
2017-05-21 12:14:03 -06:00
else
fnDepthTest = DepthTest_LessThan;
2017-05-21 12:14:03 -06:00
if (!PrevIsShadowMask)
2017-05-22 14:29:21 -06:00
memset(&StencilBuffer[256 * (y&0x1)], 0, 256);
PrevIsShadowMask = true;
if (polygon->YTop != polygon->YBottom)
{
if (y >= polygon->Vertices[rp->NextVL]->FinalPosition[1] && rp->CurVL != polygon->VBottom)
{
SetupPolygonLeftEdge(rp, y);
}
if (y >= polygon->Vertices[rp->NextVR]->FinalPosition[1] && rp->CurVR != polygon->VBottom)
{
SetupPolygonRightEdge(rp, y);
}
}
Vertex *vlcur, *vlnext, *vrcur, *vrnext;
s32 xstart, xend;
bool l_filledge, r_filledge;
s32 l_edgelen, r_edgelen;
s32 l_edgecov, r_edgecov;
Interpolator<1>* interp_start;
Interpolator<1>* interp_end;
xstart = rp->XL;
xend = rp->XR;
// CHECKME: edge fill rules for opaque shadow mask polygons
if ((polyalpha < 31) || (RenderDispCnt & (3<<4)))
{
l_filledge = true;
r_filledge = true;
}
else
{
l_filledge = (rp->SlopeL.Negative || !rp->SlopeL.XMajor);
r_filledge = (!rp->SlopeR.Negative && rp->SlopeR.XMajor) || (rp->SlopeR.Increment==0);
}
s32 wl = rp->SlopeL.Interp.Interpolate(polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL]);
s32 wr = rp->SlopeR.Interp.Interpolate(polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR]);
s32 zl = rp->SlopeL.Interp.InterpolateZ(polygon->FinalZ[rp->CurVL], polygon->FinalZ[rp->NextVL], polygon->WBuffer);
s32 zr = rp->SlopeR.Interp.InterpolateZ(polygon->FinalZ[rp->CurVR], polygon->FinalZ[rp->NextVR], polygon->WBuffer);
// if the left and right edges are swapped, render backwards.
if (xstart > xend)
{
vlcur = polygon->Vertices[rp->CurVR];
vlnext = polygon->Vertices[rp->NextVR];
vrcur = polygon->Vertices[rp->CurVL];
vrnext = polygon->Vertices[rp->NextVL];
interp_start = &rp->SlopeR.Interp;
interp_end = &rp->SlopeL.Interp;
rp->SlopeR.EdgeParams_YMajor(&l_edgelen, &l_edgecov);
rp->SlopeL.EdgeParams_YMajor(&r_edgelen, &r_edgecov);
s32 tmp;
tmp = xstart; xstart = xend; xend = tmp;
tmp = wl; wl = wr; wr = tmp;
tmp = zl; zl = zr; zr = tmp;
tmp = (s32)l_filledge; l_filledge = r_filledge; r_filledge = (bool)tmp;
}
else
{
vlcur = polygon->Vertices[rp->CurVL];
vlnext = polygon->Vertices[rp->NextVL];
vrcur = polygon->Vertices[rp->CurVR];
vrnext = polygon->Vertices[rp->NextVR];
interp_start = &rp->SlopeL.Interp;
interp_end = &rp->SlopeR.Interp;
rp->SlopeL.EdgeParams(&l_edgelen, &l_edgecov);
rp->SlopeR.EdgeParams(&r_edgelen, &r_edgecov);
}
// color/texcoord attributes aren't needed for shadow masks
// all the pixels are guaranteed to have the same alpha
// even if a texture is used (decal blending is used for shadows)
// similarly, we can perform alpha test early (checkme)
if (wireframe) polyalpha = 31;
if (polyalpha <= RenderAlphaRef) return;
// in wireframe mode, there are special rules for equal Z (TODO)
int yedge = 0;
if (y == polygon->YTop) yedge = 0x4;
else if (y == polygon->YBottom-1) yedge = 0x8;
int edge;
s32 x = xstart;
Interpolator<0> interpX(xstart, xend+1, wl, wr);
if (x < 0) x = 0;
s32 xlimit;
// for shadow masks: set stencil bits where the depth test fails.
// draw nothing.
// part 1: left edge
edge = yedge | 0x1;
xlimit = xstart+l_edgelen;
if (xlimit > xend+1) xlimit = xend+1;
if (xlimit > 256) xlimit = 256;
for (; x < xlimit; x++)
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
interpX.SetX(x);
s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer);
u32 dstattr = AttrBuffer[pixeladdr];
// checkme
if (!l_filledge)
continue;
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
StencilBuffer[256*(y&0x1) + x] |= 0x1;
if (dstattr & 0x3)
{
pixeladdr += BufferSize;
if (!fnDepthTest(DepthBuffer[pixeladdr], z, AttrBuffer[pixeladdr]))
StencilBuffer[256*(y&0x1) + x] |= 0x2;
}
}
// part 2: polygon inside
edge = yedge;
xlimit = xend-r_edgelen+1;
if (xlimit > xend+1) xlimit = xend+1;
if (xlimit > 256) xlimit = 256;
if (wireframe && !edge) x = xlimit;
else for (; x < xlimit; x++)
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
interpX.SetX(x);
s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer);
u32 dstattr = AttrBuffer[pixeladdr];
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
StencilBuffer[256*(y&0x1) + x] = 1;
if (dstattr & 0x3)
{
pixeladdr += BufferSize;
if (!fnDepthTest(DepthBuffer[pixeladdr], z, AttrBuffer[pixeladdr]))
StencilBuffer[256*(y&0x1) + x] |= 0x2;
}
}
// part 3: right edge
edge = yedge | 0x2;
xlimit = xend+1;
if (xlimit > 256) xlimit = 256;
for (; x < xlimit; x++)
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
interpX.SetX(x);
s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer);
u32 dstattr = AttrBuffer[pixeladdr];
// checkme
if (!r_filledge)
continue;
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
StencilBuffer[256*(y&0x1) + x] = 1;
if (dstattr & 0x3)
{
pixeladdr += BufferSize;
if (!fnDepthTest(DepthBuffer[pixeladdr], z, AttrBuffer[pixeladdr]))
StencilBuffer[256*(y&0x1) + x] |= 0x2;
}
}
rp->XL = rp->SlopeL.Step();
rp->XR = rp->SlopeR.Step();
}
void RenderPolygonScanline(RendererPolygon* rp, s32 y)
{
Polygon* polygon = rp->PolyData;
u32 polyattr = (polygon->Attr & 0x3F008000);
if (!polygon->FacingView) polyattr |= (1<<4);
u32 polyalpha = (polygon->Attr >> 16) & 0x1F;
bool wireframe = (polyalpha == 0);
bool (*fnDepthTest)(s32 dstz, s32 z, u32 dstattr);
if (polygon->Attr & (1<<14))
fnDepthTest = DepthTest_Equal;
else if (polygon->FacingView)
fnDepthTest = DepthTest_LessThan_FrontFacing;
else
fnDepthTest = DepthTest_LessThan;
PrevIsShadowMask = false;
2017-05-25 20:00:15 -06:00
2017-05-21 12:14:03 -06:00
if (polygon->YTop != polygon->YBottom)
{
if (y >= polygon->Vertices[rp->NextVL]->FinalPosition[1] && rp->CurVL != polygon->VBottom)
{
SetupPolygonLeftEdge(rp, y);
}
if (y >= polygon->Vertices[rp->NextVR]->FinalPosition[1] && rp->CurVR != polygon->VBottom)
{
SetupPolygonRightEdge(rp, y);
}
}
Vertex *vlcur, *vlnext, *vrcur, *vrnext;
s32 xstart, xend;
bool l_filledge, r_filledge;
s32 l_edgelen, r_edgelen;
s32 l_edgecov, r_edgecov;
Interpolator<1>* interp_start;
Interpolator<1>* interp_end;
2017-05-21 12:14:03 -06:00
xstart = rp->XL;
xend = rp->XR;
// edge fill rules for opaque pixels:
// * right edge is filled if slope > 1
// * left edge is filled if slope <= 1
// * edges with slope = 0 are always filled
// right vertical edges are pushed 1px to the left
// edges are always filled if antialiasing/edgemarking are enabled or if the pixels are translucent
2017-06-03 14:33:14 -06:00
if (wireframe || (RenderDispCnt & (1<<5)))
{
l_filledge = true;
r_filledge = true;
}
else
{
l_filledge = (rp->SlopeL.Negative || !rp->SlopeL.XMajor);
r_filledge = (!rp->SlopeR.Negative && rp->SlopeR.XMajor) || (rp->SlopeR.Increment==0);
}
2017-05-21 12:14:03 -06:00
s32 wl = rp->SlopeL.Interp.Interpolate(polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL]);
s32 wr = rp->SlopeR.Interp.Interpolate(polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR]);
s32 zl = rp->SlopeL.Interp.InterpolateZ(polygon->FinalZ[rp->CurVL], polygon->FinalZ[rp->NextVL], polygon->WBuffer);
s32 zr = rp->SlopeR.Interp.InterpolateZ(polygon->FinalZ[rp->CurVR], polygon->FinalZ[rp->NextVR], polygon->WBuffer);
// if the left and right edges are swapped, render backwards.
// on hardware, swapped edges seem to break edge length calculation,
// causing X-major edges to be rendered wrong when
// wireframe/edgemarking/antialiasing are used
// it also causes bad antialiasing, but not sure what's going on (TODO)
// most probable explanation is that such slopes are considered to be Y-major
2017-05-21 12:14:03 -06:00
if (xstart > xend)
{
vlcur = polygon->Vertices[rp->CurVR];
vlnext = polygon->Vertices[rp->NextVR];
vrcur = polygon->Vertices[rp->CurVL];
vrnext = polygon->Vertices[rp->NextVL];
interp_start = &rp->SlopeR.Interp;
interp_end = &rp->SlopeL.Interp;
rp->SlopeR.EdgeParams_YMajor(&l_edgelen, &l_edgecov);
rp->SlopeL.EdgeParams_YMajor(&r_edgelen, &r_edgecov);
2017-05-21 12:14:03 -06:00
s32 tmp;
tmp = xstart; xstart = xend; xend = tmp;
tmp = wl; wl = wr; wr = tmp;
tmp = zl; zl = zr; zr = tmp;
tmp = (s32)l_filledge; l_filledge = r_filledge; r_filledge = (bool)tmp;
2017-05-21 12:14:03 -06:00
}
else
{
vlcur = polygon->Vertices[rp->CurVL];
vlnext = polygon->Vertices[rp->NextVL];
vrcur = polygon->Vertices[rp->CurVR];
vrnext = polygon->Vertices[rp->NextVR];
interp_start = &rp->SlopeL.Interp;
interp_end = &rp->SlopeR.Interp;
rp->SlopeL.EdgeParams(&l_edgelen, &l_edgecov);
rp->SlopeR.EdgeParams(&r_edgelen, &r_edgecov);
2017-05-21 12:14:03 -06:00
}
// interpolate attributes along Y
s32 rl = interp_start->Interpolate(vlcur->FinalColor[0], vlnext->FinalColor[0]);
s32 gl = interp_start->Interpolate(vlcur->FinalColor[1], vlnext->FinalColor[1]);
s32 bl = interp_start->Interpolate(vlcur->FinalColor[2], vlnext->FinalColor[2]);
2017-05-21 12:14:03 -06:00
s32 sl = interp_start->Interpolate(vlcur->TexCoords[0], vlnext->TexCoords[0]);
s32 tl = interp_start->Interpolate(vlcur->TexCoords[1], vlnext->TexCoords[1]);
2017-05-21 12:14:03 -06:00
s32 rr = interp_end->Interpolate(vrcur->FinalColor[0], vrnext->FinalColor[0]);
s32 gr = interp_end->Interpolate(vrcur->FinalColor[1], vrnext->FinalColor[1]);
s32 br = interp_end->Interpolate(vrcur->FinalColor[2], vrnext->FinalColor[2]);
2017-05-21 12:14:03 -06:00
s32 sr = interp_end->Interpolate(vrcur->TexCoords[0], vrnext->TexCoords[0]);
s32 tr = interp_end->Interpolate(vrcur->TexCoords[1], vrnext->TexCoords[1]);
2017-05-21 12:14:03 -06:00
// in wireframe mode, there are special rules for equal Z (TODO)
int yedge = 0;
if (y == polygon->YTop) yedge = 0x4;
else if (y == polygon->YBottom-1) yedge = 0x8;
int edge;
2017-05-21 12:14:03 -06:00
s32 x = xstart;
Interpolator<0> interpX(xstart, xend+1, wl, wr);
2017-06-01 06:59:41 -06:00
if (x < 0) x = 0;
s32 xlimit;
2017-06-01 06:59:41 -06:00
s32 xcov = 0;
// part 1: left edge
edge = yedge | 0x1;
xlimit = xstart+l_edgelen;
if (xlimit > xend+1) xlimit = xend+1;
if (xlimit > 256) xlimit = 256;
if (l_edgecov & (1<<31))
{
xcov = (l_edgecov >> 12) & 0x3FF;
if (xcov == 0x3FF) xcov = 0;
}
for (; x < xlimit; x++)
2017-05-21 12:14:03 -06:00
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
u32 dstattr = AttrBuffer[pixeladdr];
2017-05-21 12:14:03 -06:00
// check stencil buffer for shadows
if (polygon->IsShadow)
2017-05-21 12:14:03 -06:00
{
u8 stencil = StencilBuffer[256*(y&0x1) + x];
if (!stencil)
continue;
if (!(stencil & 0x1))
pixeladdr += BufferSize;
if (!(stencil & 0x2))
dstattr &= ~0x3; // quick way to prevent drawing the shadow under antialiased edges
}
interpX.SetX(x);
s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer);
// if depth test against the topmost pixel fails, test
// against the pixel underneath
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
{
if (!(dstattr & 0x3)) continue;
pixeladdr += BufferSize;
dstattr = AttrBuffer[pixeladdr];
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
continue;
}
u32 vr = interpX.Interpolate(rl, rr);
u32 vg = interpX.Interpolate(gl, gr);
u32 vb = interpX.Interpolate(bl, br);
s16 s = interpX.Interpolate(sl, sr);
s16 t = interpX.Interpolate(tl, tr);
u32 color = RenderPixel(polygon, vr>>3, vg>>3, vb>>3, s, t);
u8 alpha = color >> 24;
// alpha test
if (alpha <= RenderAlphaRef) continue;
if (alpha == 31)
{
u32 attr = polyattr | edge;
if (RenderDispCnt & (1<<4))
{
// anti-aliasing: all edges are rendered
2017-06-03 14:33:14 -06:00
// calculate coverage
s32 cov = l_edgecov;
if (cov & (1<<31))
{
cov = xcov >> 5;
if (cov > 31) cov = 31;
xcov += (l_edgecov & 0x3FF);
}
2017-06-03 14:33:14 -06:00
attr |= (cov << 8);
// push old pixel down if needed
if (pixeladdr < BufferSize)
{
ColorBuffer[pixeladdr+BufferSize] = ColorBuffer[pixeladdr];
DepthBuffer[pixeladdr+BufferSize] = DepthBuffer[pixeladdr];
AttrBuffer[pixeladdr+BufferSize] = AttrBuffer[pixeladdr];
}
}
2017-06-03 14:33:14 -06:00
else if (!l_filledge)
continue;
DepthBuffer[pixeladdr] = z;
ColorBuffer[pixeladdr] = color;
AttrBuffer[pixeladdr] = attr;
}
else
{
if (!(polygon->Attr & (1<<11))) z = -1;
PlotTranslucentPixel(pixeladdr, color, z, polyattr, polygon->IsShadow);
// blend with bottom pixel too, if needed
if ((dstattr & 0x3) && (pixeladdr < BufferSize))
PlotTranslucentPixel(pixeladdr+BufferSize, color, z, polyattr, polygon->IsShadow);
}
}
// part 2: polygon inside
edge = yedge;
xlimit = xend-r_edgelen+1;
if (xlimit > xend+1) xlimit = xend+1;
if (xlimit > 256) xlimit = 256;
if (wireframe && !edge) x = xlimit;
else for (; x < xlimit; x++)
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
u32 dstattr = AttrBuffer[pixeladdr];
// check stencil buffer for shadows
if (polygon->IsShadow)
{
u8 stencil = StencilBuffer[256*(y&0x1) + x];
if (!stencil)
continue;
if (!(stencil & 0x1))
pixeladdr += BufferSize;
if (!(stencil & 0x2))
dstattr &= ~0x3; // quick way to prevent drawing the shadow under antialiased edges
}
interpX.SetX(x);
s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer);
// if depth test against the topmost pixel fails, test
// against the pixel underneath
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
{
if (!(dstattr & 0x3)) continue;
pixeladdr += BufferSize;
dstattr = AttrBuffer[pixeladdr];
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
continue;
}
u32 vr = interpX.Interpolate(rl, rr);
u32 vg = interpX.Interpolate(gl, gr);
u32 vb = interpX.Interpolate(bl, br);
s16 s = interpX.Interpolate(sl, sr);
s16 t = interpX.Interpolate(tl, tr);
u32 color = RenderPixel(polygon, vr>>3, vg>>3, vb>>3, s, t);
u8 alpha = color >> 24;
// alpha test
if (alpha <= RenderAlphaRef) continue;
if (alpha == 31)
{
u32 attr = polyattr | edge;
DepthBuffer[pixeladdr] = z;
ColorBuffer[pixeladdr] = color;
AttrBuffer[pixeladdr] = attr;
}
else
{
if (!(polygon->Attr & (1<<11))) z = -1;
PlotTranslucentPixel(pixeladdr, color, z, polyattr, polygon->IsShadow);
// blend with bottom pixel too, if needed
if ((dstattr & 0x3) && (pixeladdr < BufferSize))
PlotTranslucentPixel(pixeladdr+BufferSize, color, z, polyattr, polygon->IsShadow);
}
}
// part 3: right edge
edge = yedge | 0x2;
xlimit = xend+1;
if (xlimit > 256) xlimit = 256;
if (r_edgecov & (1<<31))
{
xcov = (r_edgecov >> 12) & 0x3FF;
if (xcov == 0x3FF) xcov = 0;
}
for (; x < xlimit; x++)
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
u32 dstattr = AttrBuffer[pixeladdr];
2017-05-21 12:14:03 -06:00
// check stencil buffer for shadows
if (polygon->IsShadow)
{
u8 stencil = StencilBuffer[256*(y&0x1) + x];
if (!stencil)
2017-05-21 12:14:03 -06:00
continue;
if (!(stencil & 0x1))
pixeladdr += BufferSize;
if (!(stencil & 0x2))
dstattr &= ~0x3; // quick way to prevent drawing the shadow under antialiased edges
2017-05-21 12:14:03 -06:00
}
interpX.SetX(x);
s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer);
// if depth test against the topmost pixel fails, test
// against the pixel underneath
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
{
if (!(dstattr & 0x3)) continue;
pixeladdr += BufferSize;
dstattr = AttrBuffer[pixeladdr];
if (!fnDepthTest(DepthBuffer[pixeladdr], z, dstattr))
continue;
}
2017-05-21 12:14:03 -06:00
u32 vr = interpX.Interpolate(rl, rr);
u32 vg = interpX.Interpolate(gl, gr);
u32 vb = interpX.Interpolate(bl, br);
s16 s = interpX.Interpolate(sl, sr);
s16 t = interpX.Interpolate(tl, tr);
u32 color = RenderPixel(polygon, vr>>3, vg>>3, vb>>3, s, t);
u8 alpha = color >> 24;
// alpha test
if (alpha <= RenderAlphaRef) continue;
if (alpha == 31)
{
u32 attr = polyattr | edge;
if (RenderDispCnt & (1<<4))
2017-05-21 12:14:03 -06:00
{
// anti-aliasing: all edges are rendered
2017-05-21 12:14:03 -06:00
2017-06-03 14:33:14 -06:00
// calculate coverage
s32 cov = r_edgecov;
if (cov & (1<<31))
{
cov = 0x1F - (xcov >> 5);
if (cov < 0) cov = 0;
xcov += (r_edgecov & 0x3FF);
}
2017-06-03 14:33:14 -06:00
attr |= (cov << 8);
// push old pixel down if needed
if (pixeladdr < BufferSize)
{
2017-06-03 14:33:14 -06:00
ColorBuffer[pixeladdr+BufferSize] = ColorBuffer[pixeladdr];
DepthBuffer[pixeladdr+BufferSize] = DepthBuffer[pixeladdr];
AttrBuffer[pixeladdr+BufferSize] = AttrBuffer[pixeladdr];
}
}
2017-06-03 14:33:14 -06:00
else if (!r_filledge)
continue;
2017-05-21 12:14:03 -06:00
DepthBuffer[pixeladdr] = z;
ColorBuffer[pixeladdr] = color;
AttrBuffer[pixeladdr] = attr;
2017-05-21 12:14:03 -06:00
}
else
{
if (!(polygon->Attr & (1<<11))) z = -1;
PlotTranslucentPixel(pixeladdr, color, z, polyattr, polygon->IsShadow);
2017-05-21 12:14:03 -06:00
// blend with bottom pixel too, if needed
if ((dstattr & 0x3) && (pixeladdr < BufferSize))
PlotTranslucentPixel(pixeladdr+BufferSize, color, z, polyattr, polygon->IsShadow);
2017-05-21 12:14:03 -06:00
}
}
rp->XL = rp->SlopeL.Step();
rp->XR = rp->SlopeR.Step();
}
2017-05-22 14:22:26 -06:00
void RenderScanline(s32 y, int npolys)
{
for (int i = 0; i < npolys; i++)
{
RendererPolygon* rp = &PolygonList[i];
Polygon* polygon = rp->PolyData;
if (y >= polygon->YTop && (y < polygon->YBottom || (y == polygon->YTop && polygon->YBottom == polygon->YTop)))
{
if (polygon->IsShadowMask)
RenderShadowMaskScanline(rp, y);
else
RenderPolygonScanline(rp, y);
}
2017-05-22 14:22:26 -06:00
}
}
2017-05-26 07:14:22 -06:00
u32 CalculateFogDensity(u32 pixeladdr)
{
u32 z = DepthBuffer[pixeladdr];
u32 densityid, densityfrac;
if (z < RenderFogOffset)
{
densityid = 0;
densityfrac = 0;
}
else
{
// technically: Z difference is shifted right by two, then shifted left by fog shift
// then bit 0-16 are the fractional part and bit 17-31 are the density index
// on hardware, the final value can overflow the 32-bit range with a shift big enough,
// causing fog to 'wrap around' and accidentally apply to larger Z ranges
z -= RenderFogOffset;
z = (z >> 2) << RenderFogShift;
densityid = z >> 17;
if (densityid >= 32)
{
densityid = 32;
densityfrac = 0;
}
else
densityfrac = z & 0x1FFFF;
}
// checkme (may be too precise?)
u32 density =
((RenderFogDensityTable[densityid] * (0x20000-densityfrac)) +
(RenderFogDensityTable[densityid+1] * densityfrac)) >> 17;
if (density >= 127) density = 128;
return density;
}
void ScanlineFinalPass(s32 y)
{
2017-06-03 14:33:14 -06:00
// to consider:
// clearing all polygon fog flags if the master flag isn't set?
// merging all final pass loops into one?
if (RenderDispCnt & (1<<5))
{
// edge marking
// only applied to topmost pixels
2017-06-03 14:33:14 -06:00
for (int x = 0; x < 256; x++)
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
u32 attr = AttrBuffer[pixeladdr];
if (!(attr & 0xF)) continue;
u32 polyid = attr >> 24; // opaque polygon IDs are used for edgemarking
2017-06-03 14:33:14 -06:00
u32 z = DepthBuffer[pixeladdr];
if (((polyid != (AttrBuffer[pixeladdr-1] >> 24)) && (z < DepthBuffer[pixeladdr-1])) ||
((polyid != (AttrBuffer[pixeladdr+1] >> 24)) && (z < DepthBuffer[pixeladdr+1])) ||
((polyid != (AttrBuffer[pixeladdr-ScanlineWidth] >> 24)) && (z < DepthBuffer[pixeladdr-ScanlineWidth])) ||
((polyid != (AttrBuffer[pixeladdr+ScanlineWidth] >> 24)) && (z < DepthBuffer[pixeladdr+ScanlineWidth])))
{
u16 edgecolor = RenderEdgeTable[polyid >> 3];
u32 edgeR = (edgecolor << 1) & 0x3E; if (edgeR) edgeR++;
u32 edgeG = (edgecolor >> 4) & 0x3E; if (edgeG) edgeG++;
u32 edgeB = (edgecolor >> 9) & 0x3E; if (edgeB) edgeB++;
ColorBuffer[pixeladdr] = edgeR | (edgeG << 8) | (edgeB << 16) | (ColorBuffer[pixeladdr] & 0xFF000000);
// break antialiasing coverage (checkme)
AttrBuffer[pixeladdr] = (AttrBuffer[pixeladdr] & 0xFFFFE0FF) | 0x00001000;
}
}
}
2017-05-26 07:14:22 -06:00
if (RenderDispCnt & (1<<7))
{
// fog
// hardware testing shows that the fog step is 0x80000>>SHIFT
// basically, the depth values used in GBAtek need to be
// multiplied by 0x200 to match Z-buffer values
// fog is applied to the topmost two pixels, which is required for
// proper antialiasing
// TODO: check the 'fog alpha glitch with small Z' GBAtek talks about
2017-05-26 07:14:22 -06:00
bool fogcolor = !(RenderDispCnt & (1<<6));
u32 fogR = (RenderFogColor << 1) & 0x3E; if (fogR) fogR++;
u32 fogG = (RenderFogColor >> 4) & 0x3E; if (fogG) fogG++;
u32 fogB = (RenderFogColor >> 9) & 0x3E; if (fogB) fogB++;
u32 fogA = (RenderFogColor >> 16) & 0x1F;
for (int x = 0; x < 256; x++)
2017-05-26 07:14:22 -06:00
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
u32 density, srccolor, srcR, srcG, srcB, srcA;
u32 attr = AttrBuffer[pixeladdr];
if (!(attr & (1<<15))) continue;
density = CalculateFogDensity(pixeladdr);
srccolor = ColorBuffer[pixeladdr];
srcR = srccolor & 0x3F;
srcG = (srccolor >> 8) & 0x3F;
srcB = (srccolor >> 16) & 0x3F;
srcA = (srccolor >> 24) & 0x1F;
if (fogcolor)
{
srcR = ((fogR * density) + (srcR * (128-density))) >> 7;
srcG = ((fogG * density) + (srcG * (128-density))) >> 7;
srcB = ((fogB * density) + (srcB * (128-density))) >> 7;
}
2017-05-26 07:14:22 -06:00
srcA = ((fogA * density) + (srcA * (128-density))) >> 7;
2017-05-26 07:14:22 -06:00
ColorBuffer[pixeladdr] = srcR | (srcG << 8) | (srcB << 16) | (srcA << 24);
// fog for lower pixel
// TODO: make this code nicer, but avoid using a loop
2017-05-26 07:14:22 -06:00
if (!(attr & 0x3)) continue;
pixeladdr += BufferSize;
2017-05-26 07:14:22 -06:00
attr = AttrBuffer[pixeladdr];
if (!(attr & (1<<15))) continue;
density = CalculateFogDensity(pixeladdr);
2017-05-26 07:14:22 -06:00
srccolor = ColorBuffer[pixeladdr];
srcR = srccolor & 0x3F;
srcG = (srccolor >> 8) & 0x3F;
srcB = (srccolor >> 16) & 0x3F;
srcA = (srccolor >> 24) & 0x1F;
if (fogcolor)
{
srcR = ((fogR * density) + (srcR * (128-density))) >> 7;
srcG = ((fogG * density) + (srcG * (128-density))) >> 7;
srcB = ((fogB * density) + (srcB * (128-density))) >> 7;
}
srcA = ((fogA * density) + (srcA * (128-density))) >> 7;
ColorBuffer[pixeladdr] = srcR | (srcG << 8) | (srcB << 16) | (srcA << 24);
2017-05-26 07:14:22 -06:00
}
}
if (RenderDispCnt & (1<<4))
{
// anti-aliasing
2017-10-01 16:55:44 -06:00
// edges were flagged and their coverages calculated during rendering
// this is where such edge pixels are blended with the pixels underneath
for (int x = 0; x < 256; x++)
{
u32 pixeladdr = FirstPixelOffset + (y*ScanlineWidth) + x;
u32 attr = AttrBuffer[pixeladdr];
if (!(attr & 0x3)) continue;
u32 coverage = (attr >> 8) & 0x1F;
if (coverage == 0x1F) continue;
if (coverage == 0)
{
ColorBuffer[pixeladdr] = ColorBuffer[pixeladdr+BufferSize];
continue;
}
u32 topcolor = ColorBuffer[pixeladdr];
u32 topR = topcolor & 0x3F;
u32 topG = (topcolor >> 8) & 0x3F;
u32 topB = (topcolor >> 16) & 0x3F;
u32 topA = (topcolor >> 24) & 0x1F;
u32 botcolor = ColorBuffer[pixeladdr+BufferSize];
u32 botR = botcolor & 0x3F;
u32 botG = (botcolor >> 8) & 0x3F;
u32 botB = (botcolor >> 16) & 0x3F;
u32 botA = (botcolor >> 24) & 0x1F;
coverage++;
// only blend color if the bottom pixel isn't fully transparent
if (botA > 0)
{
topR = ((topR * coverage) + (botR * (32-coverage))) >> 5;
topG = ((topG * coverage) + (botG * (32-coverage))) >> 5;
topB = ((topB * coverage) + (botB * (32-coverage))) >> 5;
}
// alpha is always blended
topA = ((topA * coverage) + (botA * (32-coverage))) >> 5;
ColorBuffer[pixeladdr] = topR | (topG << 8) | (topB << 16) | (topA << 24);
}
}
2017-05-22 14:22:26 -06:00
}
void ClearBuffers()
2017-02-10 08:50:26 -07:00
{
u32 clearz = ((RenderClearAttr2 & 0x7FFF) * 0x200) + 0x1FF;
u32 polyid = RenderClearAttr1 & 0x3F000000; // this sets the opaque polygonID
// fill screen borders for edge marking
for (int x = 0; x < ScanlineWidth; x++)
{
ColorBuffer[x] = 0;
DepthBuffer[x] = clearz;
AttrBuffer[x] = polyid;
}
for (int x = ScanlineWidth; x < ScanlineWidth*193; x+=ScanlineWidth)
{
ColorBuffer[x] = 0;
DepthBuffer[x] = clearz;
AttrBuffer[x] = polyid;
ColorBuffer[x+257] = 0;
DepthBuffer[x+257] = clearz;
AttrBuffer[x+257] = polyid;
}
for (int x = ScanlineWidth*193; x < ScanlineWidth*194; x++)
{
ColorBuffer[x] = 0;
DepthBuffer[x] = clearz;
AttrBuffer[x] = polyid;
}
// clear the screen
if (RenderDispCnt & (1<<14))
{
u8 xoff = (RenderClearAttr2 >> 16) & 0xFF;
u8 yoff = (RenderClearAttr2 >> 24) & 0xFF;
for (int y = 0; y < ScanlineWidth*192; y+=ScanlineWidth)
{
for (int x = 0; x < 256; x++)
{
u16 val2 = GPU::ReadVRAM_Texture<u16>(0x40000 + (yoff << 9) + (xoff << 1));
u16 val3 = GPU::ReadVRAM_Texture<u16>(0x60000 + (yoff << 9) + (xoff << 1));
// TODO: confirm color conversion
u32 r = (val2 << 1) & 0x3E; if (r) r++;
u32 g = (val2 >> 4) & 0x3E; if (g) g++;
u32 b = (val2 >> 9) & 0x3E; if (b) b++;
u32 a = (val2 & 0x8000) ? 0x1F000000 : 0;
u32 color = r | (g << 8) | (b << 16) | a;
u32 z = ((val3 & 0x7FFF) * 0x200) + 0x1FF;
u32 pixeladdr = FirstPixelOffset + y + x;
ColorBuffer[pixeladdr] = color;
DepthBuffer[pixeladdr] = z;
AttrBuffer[pixeladdr] = polyid | (val3 & 0x8000);
xoff++;
}
yoff++;
}
}
else
{
// TODO: confirm color conversion
u32 r = (RenderClearAttr1 << 1) & 0x3E; if (r) r++;
u32 g = (RenderClearAttr1 >> 4) & 0x3E; if (g) g++;
u32 b = (RenderClearAttr1 >> 9) & 0x3E; if (b) b++;
u32 a = (RenderClearAttr1 >> 16) & 0x1F;
u32 color = r | (g << 8) | (b << 16) | (a << 24);
polyid |= (RenderClearAttr1 & 0x8000);
2017-03-12 17:45:26 -06:00
for (int y = 0; y < ScanlineWidth*192; y+=ScanlineWidth)
{
for (int x = 0; x < 256; x++)
{
u32 pixeladdr = FirstPixelOffset + y + x;
ColorBuffer[pixeladdr] = color;
DepthBuffer[pixeladdr] = clearz;
AttrBuffer[pixeladdr] = polyid;
}
}
}
}
2017-05-25 17:22:11 -06:00
void RenderPolygons(bool threaded, Polygon** polygons, int npolys)
{
// polygons with ybottom>192 aren't rendered at all
2017-05-22 14:22:26 -06:00
int j = 0;
2017-05-21 12:14:03 -06:00
for (int i = 0; i < npolys; i++)
{
if (polygons[i]->YBottom > 192) continue;
SetupPolygon(&PolygonList[j++], polygons[i]);
2017-05-22 14:22:26 -06:00
}
RenderScanline(0, j);
for (s32 y = 1; y < 192; y++)
2017-03-15 08:53:36 -06:00
{
RenderScanline(y, j);
ScanlineFinalPass(y-1);
if (threaded)
2017-05-25 17:22:11 -06:00
Platform::Semaphore_Post(Sema_ScanlineCount);
2017-03-15 08:53:36 -06:00
}
ScanlineFinalPass(191);
if (threaded)
Platform::Semaphore_Post(Sema_ScanlineCount);
}
2017-03-15 08:53:36 -06:00
void VCount144()
{
if (RenderThreadRunning)
Platform::Semaphore_Wait(Sema_RenderDone);
}
void RenderFrame()
{
if (RenderThreadRunning)
{
Platform::Semaphore_Post(Sema_RenderStart);
}
else
{
ClearBuffers();
RenderPolygons(false, &RenderPolygonRAM[0], RenderNumPolygons);
}
}
void RenderThreadFunc()
{
for (;;)
2017-05-22 14:22:26 -06:00
{
Platform::Semaphore_Wait(Sema_RenderStart);
if (!RenderThreadRunning) return;
2017-05-25 17:22:11 -06:00
RenderThreadRendering = true;
ClearBuffers();
RenderPolygons(true, &RenderPolygonRAM[0], RenderNumPolygons);
Platform::Semaphore_Post(Sema_RenderDone);
2017-05-25 17:22:11 -06:00
RenderThreadRendering = false;
}
}
void RequestLine(int line)
{
if (RenderThreadRunning)
{
if (line < 192)
Platform::Semaphore_Wait(Sema_ScanlineCount);
}
}
u32* GetLine(int line)
{
return &ColorBuffer[(line * ScanlineWidth) + FirstPixelOffset];
2017-02-10 08:50:26 -07:00
}
}
}