take it somewhere.

still need to speed it up a tad.
This commit is contained in:
StapleButter
2018-12-09 01:17:05 +01:00
parent c6fb152d80
commit 29bca33bc6
8 changed files with 359 additions and 414 deletions

View File

@ -136,17 +136,6 @@ void ARMv5::DoSavestate(Savestate* file)
} }
void ARMv5::CalculateTimings()
{
//
}
void ARMv4::CalculateTimings()
{
//
}
void ARM::SetupCodeMem(u32 addr) void ARM::SetupCodeMem(u32 addr)
{ {
if (!Num) if (!Num)
@ -181,8 +170,11 @@ void ARMv5::JumpTo(u32 addr, bool restorecpsr)
//printf("[%03d] IRQ handler thing. wait=%08X\n", GPU::VCount, dorp); //printf("[%03d] IRQ handler thing. wait=%08X\n", GPU::VCount, dorp);
} }
u32 oldregion = R[15] >> 23; u32 oldregion = R[15] >> 24;
u32 newregion = addr >> 23; u32 newregion = addr >> 24;
if (addr < ITCMSize) CodeCycles = 1;
else CodeCycles = MemTimings[addr >> 12][0];
s32 cycles; s32 cycles;
@ -199,13 +191,13 @@ void ARMv5::JumpTo(u32 addr, bool restorecpsr)
{ {
NextInstr[0] = CodeRead32(addr-2) >> 16; NextInstr[0] = CodeRead32(addr-2) >> 16;
NextInstr[1] = CodeRead32(addr+2); NextInstr[1] = CodeRead32(addr+2);
cycles = NDS::ARM9MemTimings[CodeRegion][2] * 2; cycles = CodeCycles * 2;
} }
else else
{ {
NextInstr[0] = CodeRead32(addr); NextInstr[0] = CodeRead32(addr);
NextInstr[1] = NextInstr[0] >> 16; NextInstr[1] = NextInstr[0] >> 16;
cycles = NDS::ARM9MemTimings[CodeRegion][2]; cycles = CodeCycles;
} }
CPSR |= 0x20; CPSR |= 0x20;
@ -219,7 +211,7 @@ void ARMv5::JumpTo(u32 addr, bool restorecpsr)
NextInstr[0] = CodeRead32(addr); NextInstr[0] = CodeRead32(addr);
NextInstr[1] = CodeRead32(addr+4); NextInstr[1] = CodeRead32(addr+4);
cycles = NDS::ARM9MemTimings[CodeRegion][2] * 2; cycles = CodeCycles * 2;
CPSR &= ~0x20; CPSR &= ~0x20;
} }
@ -250,6 +242,9 @@ void ARMv4::JumpTo(u32 addr, bool restorecpsr)
u32 oldregion = R[15] >> 23; u32 oldregion = R[15] >> 23;
u32 newregion = addr >> 23; u32 newregion = addr >> 23;
CodeRegion = addr >> 24;
CodeCycles = addr >> 15; // cheato
if (addr & 0x1) if (addr & 0x1)
{ {
addr &= ~0x1; addr &= ~0x1;
@ -259,7 +254,7 @@ void ARMv4::JumpTo(u32 addr, bool restorecpsr)
NextInstr[0] = CodeRead16(addr); NextInstr[0] = CodeRead16(addr);
NextInstr[1] = CodeRead16(addr+2); NextInstr[1] = CodeRead16(addr+2);
Cycles += NDS::ARM7MemTimings[CodeRegion][0] + NDS::ARM7MemTimings[CodeRegion][1]; Cycles += NDS::ARM7MemTimings[CodeCycles][0] + NDS::ARM7MemTimings[CodeCycles][1];
CPSR |= 0x20; CPSR |= 0x20;
} }
@ -272,7 +267,7 @@ void ARMv4::JumpTo(u32 addr, bool restorecpsr)
NextInstr[0] = CodeRead32(addr); NextInstr[0] = CodeRead32(addr);
NextInstr[1] = CodeRead32(addr+4); NextInstr[1] = CodeRead32(addr+4);
Cycles += NDS::ARM7MemTimings[CodeRegion][2] + NDS::ARM7MemTimings[CodeRegion][3]; Cycles += NDS::ARM7MemTimings[CodeCycles][2] + NDS::ARM7MemTimings[CodeCycles][3];
CPSR &= ~0x20; CPSR &= ~0x20;
} }
@ -482,8 +477,8 @@ s32 ARMv5::Execute()
R[15] += 2; R[15] += 2;
CurInstr = NextInstr[0]; CurInstr = NextInstr[0];
NextInstr[0] = NextInstr[1]; NextInstr[0] = NextInstr[1];
if (R[15] & 0x2) { NextInstr[1] >>= 16; CodeRegion = NDS::Region9_MAX; } if (R[15] & 0x2) NextInstr[1] >>= 16;
else NextInstr[1] = CodeRead32(R[15]); else NextInstr[1] = CodeRead32(R[15]);
// actually execute // actually execute
u32 icode = (CurInstr >> 6) & 0x3FF; u32 icode = (CurInstr >> 6) & 0x3FF;

187
src/ARM.h
View File

@ -48,8 +48,6 @@ public:
ClockDiffMask = (1<<shift) - 1; ClockDiffMask = (1<<shift) - 1;
} }
virtual void CalculateTimings() = 0;
virtual void JumpTo(u32 addr, bool restorecpsr = false) = 0; virtual void JumpTo(u32 addr, bool restorecpsr = false) = 0;
void RestoreCPSR(); void RestoreCPSR();
@ -107,15 +105,17 @@ public:
void SetupCodeMem(u32 addr); void SetupCodeMem(u32 addr);
virtual bool DataRead8(u32 addr, u32* val, u32 flags) = 0; virtual void DataRead8(u32 addr, u32* val) = 0;
virtual bool DataRead16(u32 addr, u32* val, u32 flags) = 0; virtual void DataRead16(u32 addr, u32* val) = 0;
virtual bool DataRead32(u32 addr, u32* val, u32 flags) = 0; virtual void DataRead32(u32 addr, u32* val) = 0;
virtual bool DataWrite8(u32 addr, u8 val, u32 flags) = 0; virtual void DataRead32S(u32 addr, u32* val) = 0;
virtual bool DataWrite16(u32 addr, u16 val, u32 flags) = 0; virtual void DataWrite8(u32 addr, u8 val) = 0;
virtual bool DataWrite32(u32 addr, u32 val, u32 flags) = 0; virtual void DataWrite16(u32 addr, u16 val) = 0;
virtual void DataWrite32(u32 addr, u32 val) = 0;
virtual void DataWrite32S(u32 addr, u32 val) = 0;
virtual void AddCycles_C() = 0; virtual void AddCycles_C() = 0;
virtual void AddCycles_CI(s32 num) = 0; virtual void AddCycles_CI(s32 numI) = 0;
virtual void AddCycles_CDI() = 0; virtual void AddCycles_CDI() = 0;
virtual void AddCycles_CD() = 0; virtual void AddCycles_CD() = 0;
@ -131,9 +131,10 @@ public:
s32 CyclesToRun; s32 CyclesToRun;
u32 Halted; u32 Halted;
int CodeRegion; u32 CodeRegion;
s32 CodeCycles;
int DataRegion; u32 DataRegion;
s32 DataCycles; s32 DataCycles;
u32 R[16]; // heh u32 R[16]; // heh
@ -162,7 +163,7 @@ public:
void DoSavestate(Savestate* file); void DoSavestate(Savestate* file);
void CalculateTimings(); void UpdateRegionTimings(u32 addrstart, u32 addrend);
void JumpTo(u32 addr, bool restorecpsr = false); void JumpTo(u32 addr, bool restorecpsr = false);
@ -174,48 +175,52 @@ public:
// all code accesses are forced nonseq 32bit // all code accesses are forced nonseq 32bit
u32 CodeRead32(u32 addr); u32 CodeRead32(u32 addr);
bool DataRead8(u32 addr, u32* val, u32 flags); void DataRead8(u32 addr, u32* val);
bool DataRead16(u32 addr, u32* val, u32 flags); void DataRead16(u32 addr, u32* val);
bool DataRead32(u32 addr, u32* val, u32 flags); void DataRead32(u32 addr, u32* val);
bool DataWrite8(u32 addr, u8 val, u32 flags); void DataRead32S(u32 addr, u32* val);
bool DataWrite16(u32 addr, u16 val, u32 flags); void DataWrite8(u32 addr, u8 val);
bool DataWrite32(u32 addr, u32 val, u32 flags); void DataWrite16(u32 addr, u16 val);
void DataWrite32(u32 addr, u32 val);
void DataWrite32S(u32 addr, u32 val);
void AddCycles_C() void AddCycles_C()
{ {
// code only. always nonseq 32-bit for ARM9. // code only. always nonseq 32-bit for ARM9.
Cycles += NDS::ARM9MemTimings[CodeRegion][2]; s32 numC = (R[15] & 0x2) ? 0 : CodeCycles;
Cycles += numC;
} }
void AddCycles_CI(s32 num) void AddCycles_CI(s32 numI)
{ {
// code+internal // code+internal
Cycles += NDS::ARM9MemTimings[CodeRegion][2] + num; s32 numC = (R[15] & 0x2) ? 0 : CodeCycles;
Cycles += numC + numI;
} }
void AddCycles_CDI() void AddCycles_CDI()
{ {
// LDR/LDM cycles. ARM9 seems to skip the internal cycle there. // LDR/LDM cycles. ARM9 seems to skip the internal cycle there.
// TODO: ITCM data fetches shouldn't be parallelized, they say // TODO: ITCM data fetches shouldn't be parallelized, they say
s32 numC = NDS::ARM9MemTimings[CodeRegion][2]; s32 numC = (R[15] & 0x2) ? 0 : CodeCycles;
s32 numD = DataCycles; s32 numD = DataCycles;
if (DataRegion != CodeRegion) //if (DataRegion != CodeRegion)
Cycles += std::max(numC + numD - 6, std::max(numC, numD)); Cycles += std::max(numC + numD - 6, std::max(numC, numD));
else //else
Cycles += numC + numD; // Cycles += numC + numD;
} }
void AddCycles_CD() void AddCycles_CD()
{ {
// TODO: ITCM data fetches shouldn't be parallelized, they say // TODO: ITCM data fetches shouldn't be parallelized, they say
s32 numC = NDS::ARM9MemTimings[CodeRegion][2]; s32 numC = (R[15] & 0x2) ? 0 : CodeCycles;
s32 numD = DataCycles; s32 numD = DataCycles;
if (DataRegion != CodeRegion) //if (DataRegion != CodeRegion)
Cycles += std::max(numC + numD - 6, std::max(numC, numD)); Cycles += std::max(numC + numD - 6, std::max(numC, numD));
else //else
Cycles += numC + numD; // Cycles += numC + numD;
} }
void GetCodeMemRegion(u32 addr, NDS::MemRegion* region); void GetCodeMemRegion(u32 addr, NDS::MemRegion* region);
@ -250,14 +255,14 @@ public:
u32 PU_Region[8]; u32 PU_Region[8];
// 0=dataR 1=dataW 2=codeR 4=datacache 5=datawrite 6=codecache // 0=dataR 1=dataW 2=codeR 4=datacache 5=datawrite 6=codecache
// seems the DS operates entirely under privileged mode? it never sets user regions to be read/writable
// TODO: investigate
u8 PU_UserMap[0x100000];
u8 PU_PrivMap[0x100000]; u8 PU_PrivMap[0x100000];
//u8* PU_Map; u8 PU_UserMap[0x100000];
// games operate under system mode, generally
#define PU_Map PU_PrivMap #define PU_Map PU_PrivMap
bool CodeCached; // code/16N/32N/32S
u8 MemTimings[0x100000][4];
}; };
class ARMv4 : public ARM class ARMv4 : public ARM
@ -265,122 +270,108 @@ class ARMv4 : public ARM
public: public:
ARMv4(); ARMv4();
void CalculateTimings();
void JumpTo(u32 addr, bool restorecpsr = false); void JumpTo(u32 addr, bool restorecpsr = false);
s32 Execute(); s32 Execute();
u16 CodeRead16(u32 addr) u16 CodeRead16(u32 addr)
{ {
u32 ret; return NDS::ARM7Read16(addr);
CodeRegion = NDS::ARM7Read16(addr, &ret);
return ret;
} }
u32 CodeRead32(u32 addr) u32 CodeRead32(u32 addr)
{ {
u32 ret; return NDS::ARM7Read32(addr);
CodeRegion = NDS::ARM7Read32(addr, &ret);
return ret;
} }
bool DataRead8(u32 addr, u32* val, u32 flags) void DataRead8(u32 addr, u32* val)
{ {
DataRegion = NDS::ARM7Read8(addr, val); *val = NDS::ARM7Read8(addr);
if (flags & RWFlags_Nonseq) DataRegion = addr >> 24;
DataCycles = NDS::ARM7MemTimings[DataRegion][0]; DataCycles = NDS::ARM7MemTimings[DataRegion][0];
else
DataCycles += NDS::ARM7MemTimings[DataRegion][1];
return true;
} }
bool DataRead16(u32 addr, u32* val, u32 flags) void DataRead16(u32 addr, u32* val)
{ {
addr &= ~1; addr &= ~1;
DataRegion = NDS::ARM7Read16(addr, val); *val = NDS::ARM7Read16(addr);
if (flags & RWFlags_Nonseq) DataRegion = addr >> 24;
DataCycles = NDS::ARM7MemTimings[DataRegion][0]; DataCycles = NDS::ARM7MemTimings[DataRegion][0];
else
DataCycles += NDS::ARM7MemTimings[DataRegion][1];
return true;
} }
bool DataRead32(u32 addr, u32* val, u32 flags) void DataRead32(u32 addr, u32* val)
{ {
addr &= ~3; addr &= ~3;
DataRegion = NDS::ARM7Read32(addr, val); *val = NDS::ARM7Read32(addr);
if (flags & RWFlags_Nonseq) DataRegion = addr >> 24;
DataCycles = NDS::ARM7MemTimings[DataRegion][2]; DataCycles = NDS::ARM7MemTimings[DataRegion][2];
else
DataCycles += NDS::ARM7MemTimings[DataRegion][3];
return true;
} }
bool DataWrite8(u32 addr, u8 val, u32 flags) void DataRead32S(u32 addr, u32* val)
{ {
DataRegion = NDS::ARM7Write8(addr, val); addr &= ~3;
if (flags & RWFlags_Nonseq)
DataCycles = NDS::ARM7MemTimings[DataRegion][0];
else
DataCycles += NDS::ARM7MemTimings[DataRegion][1];
return true; *val = NDS::ARM7Read32(addr);
DataCycles += NDS::ARM7MemTimings[DataRegion][3];
} }
bool DataWrite16(u32 addr, u16 val, u32 flags) void DataWrite8(u32 addr, u8 val)
{
NDS::ARM7Write8(addr, val);
DataRegion = addr >> 24;
DataCycles = NDS::ARM7MemTimings[DataRegion][0];
}
void DataWrite16(u32 addr, u16 val)
{ {
addr &= ~1; addr &= ~1;
DataRegion = NDS::ARM7Write16(addr, val); NDS::ARM7Write16(addr, val);
if (flags & RWFlags_Nonseq) DataRegion = addr >> 24;
DataCycles = NDS::ARM7MemTimings[DataRegion][0]; DataCycles = NDS::ARM7MemTimings[DataRegion][0];
else
DataCycles += NDS::ARM7MemTimings[DataRegion][1];
return true;
} }
bool DataWrite32(u32 addr, u32 val, u32 flags) void DataWrite32(u32 addr, u32 val)
{ {
addr &= ~3; addr &= ~3;
DataRegion = NDS::ARM7Write32(addr, val); NDS::ARM7Write32(addr, val);
if (flags & RWFlags_Nonseq) DataRegion = addr >> 24;
DataCycles = NDS::ARM7MemTimings[DataRegion][2]; DataCycles = NDS::ARM7MemTimings[DataRegion][2];
else }
DataCycles += NDS::ARM7MemTimings[DataRegion][3];
return true; void DataWrite32S(u32 addr, u32 val)
{
addr &= ~3;
NDS::ARM7Write32(addr, val);
DataCycles += NDS::ARM7MemTimings[DataRegion][3];
} }
void AddCycles_C() void AddCycles_C()
{ {
// code only. this code fetch is sequential. // code only. this code fetch is sequential.
Cycles += NDS::ARM7MemTimings[CodeRegion][(CPSR&0x20)?1:3]; Cycles += NDS::ARM7MemTimings[CodeCycles][(CPSR&0x20)?1:3];
} }
void AddCycles_CI(s32 num) void AddCycles_CI(s32 num)
{ {
// code+internal. results in a nonseq code fetch. // code+internal. results in a nonseq code fetch.
Cycles += NDS::ARM7MemTimings[CodeRegion][(CPSR&0x20)?0:2] + num; Cycles += NDS::ARM7MemTimings[CodeCycles][(CPSR&0x20)?0:2] + num;
} }
void AddCycles_CDI() void AddCycles_CDI()
{ {
// LDR/LDM cycles. // LDR/LDM cycles.
s32 numC = NDS::ARM7MemTimings[CodeRegion][(CPSR&0x20)?0:2]; s32 numC = NDS::ARM7MemTimings[CodeCycles][(CPSR&0x20)?0:2];
s32 numD = DataCycles; s32 numD = DataCycles;
if (DataRegion == NDS::Region7_MainRAM) if (DataRegion == 0x02) // mainRAM
{ {
if (CodeRegion == NDS::Region7_MainRAM) if (CodeRegion == 0x02)
Cycles += numC + numD; Cycles += numC + numD;
else else
{ {
@ -388,7 +379,7 @@ public:
Cycles += std::max(numC + numD - 3, std::max(numC, numD)); Cycles += std::max(numC + numD - 3, std::max(numC, numD));
} }
} }
else if (CodeRegion == NDS::Region7_MainRAM) else if (CodeRegion == 0x02)
{ {
numD++; numD++;
Cycles += std::max(numC + numD - 3, std::max(numC, numD)); Cycles += std::max(numC + numD - 3, std::max(numC, numD));
@ -402,17 +393,17 @@ public:
void AddCycles_CD() void AddCycles_CD()
{ {
// TODO: max gain should be 5c when writing to mainRAM // TODO: max gain should be 5c when writing to mainRAM
s32 numC = NDS::ARM7MemTimings[CodeRegion][(CPSR&0x20)?0:2]; s32 numC = NDS::ARM7MemTimings[CodeCycles][(CPSR&0x20)?0:2];
s32 numD = DataCycles; s32 numD = DataCycles;
if (DataRegion == NDS::Region7_MainRAM) if (DataRegion == 0x02)
{ {
if (CodeRegion == NDS::Region7_MainRAM) if (CodeRegion == 0x02)
Cycles += numC + numD; Cycles += numC + numD;
else else
Cycles += std::max(numC + numD - 3, std::max(numC, numD)); Cycles += std::max(numC + numD - 3, std::max(numC, numD));
} }
else if (CodeRegion == NDS::Region7_MainRAM) else if (CodeRegion == 0x02)
{ {
Cycles += std::max(numC + numD - 3, std::max(numC, numD)); Cycles += std::max(numC + numD - 3, std::max(numC, numD));
} }

View File

@ -62,32 +62,33 @@ namespace ARMInterpreter
#define A_STR \ #define A_STR \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (!cpu->DataWrite32(offset, cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataWrite32(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CD(); cpu->AddCycles_CD();
// TODO: user mode (bit21)
#define A_STR_POST \ #define A_STR_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (!cpu->DataWrite32(addr, cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq | (cpu->CurInstr & (1<<21)))) return; \ cpu->DataWrite32(addr, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CD(); cpu->AddCycles_CD();
#define A_STRB \ #define A_STRB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (!cpu->DataWrite8(offset, cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataWrite8(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CD(); cpu->AddCycles_CD();
// TODO: user mode (bit21)
#define A_STRB_POST \ #define A_STRB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (!cpu->DataWrite8(addr, cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq | (cpu->CurInstr & (1<<21)))) return; \ cpu->DataWrite8(addr, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CD(); cpu->AddCycles_CD();
#define A_LDR \ #define A_LDR \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val; \ u32 val; cpu->DataRead32(offset, &val); \
if (!cpu->DataRead32(offset, &val, RWFlags_Nonseq)) return; \
val = ROR(val, ((offset&0x3)<<3)); \ val = ROR(val, ((offset&0x3)<<3)); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
@ -101,10 +102,10 @@ namespace ARMInterpreter
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \ cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
} }
// TODO: user mode
#define A_LDR_POST \ #define A_LDR_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val; \ u32 val; cpu->DataRead32(addr, &val); \
if (!cpu->DataRead32(addr, &val, RWFlags_Nonseq | (cpu->CurInstr & (1<<21)))) return; \
val = ROR(val, ((addr&0x3)<<3)); \ val = ROR(val, ((addr&0x3)<<3)); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
@ -120,17 +121,16 @@ namespace ARMInterpreter
#define A_LDRB \ #define A_LDRB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val; \ u32 val; cpu->DataRead8(offset, &val); \
if (!cpu->DataRead8(offset, &val, RWFlags_Nonseq)) return; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \ cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRB PC %08X\n", cpu->R[15]); \ if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRB PC %08X\n", cpu->R[15]); \
// TODO: user mode
#define A_LDRB_POST \ #define A_LDRB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
u32 val; \ u32 val; cpu->DataRead8(addr, &val); \
if (!cpu->DataRead8(addr, &val, RWFlags_Nonseq | (cpu->CurInstr & (1<<21)))) return; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \ cpu->R[(cpu->CurInstr>>12) & 0xF] = val; \
@ -219,13 +219,13 @@ A_IMPLEMENT_WB_LDRSTR(LDRB)
#define A_STRH \ #define A_STRH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (!cpu->DataWrite16(offset, cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataWrite16(offset, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
cpu->AddCycles_CD(); cpu->AddCycles_CD();
#define A_STRH_POST \ #define A_STRH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (!cpu->DataWrite16(addr, cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataWrite16(addr, cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
cpu->AddCycles_CD(); cpu->AddCycles_CD();
@ -236,9 +236,9 @@ A_IMPLEMENT_WB_LDRSTR(LDRB)
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \ u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) printf("!! MISALIGNED LDRD %d\n", r); \ if (r&1) { r--; printf("!! MISALIGNED LDRD_POST %d\n", r); } \
if (!cpu->DataRead32(offset , &cpu->R[r ], RWFlags_Nonseq)) return; \ cpu->DataRead32 (offset , &cpu->R[r ]); \
if (!cpu->DataRead32(offset+4, &cpu->R[r+1], 0)) return; \ cpu->DataRead32S(offset+4, &cpu->R[r+1]); \
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
#define A_LDRD_POST \ #define A_LDRD_POST \
@ -246,9 +246,9 @@ A_IMPLEMENT_WB_LDRSTR(LDRB)
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \ u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) printf("!! MISALIGNED LDRD_POST %d\n", r); \ if (r&1) { r--; printf("!! MISALIGNED LDRD_POST %d\n", r); } \
if (!cpu->DataRead32(addr , &cpu->R[r ], RWFlags_Nonseq)) return; \ cpu->DataRead32 (addr , &cpu->R[r ]); \
if (!cpu->DataRead32(addr+4, &cpu->R[r+1], 0)) return; \ cpu->DataRead32S(addr+4, &cpu->R[r+1]); \
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
#define A_STRD \ #define A_STRD \
@ -256,38 +256,38 @@ A_IMPLEMENT_WB_LDRSTR(LDRB)
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \ u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) printf("!! MISALIGNED STRD %d\n", r); \ if (r&1) { r--; printf("!! MISALIGNED LDRD_POST %d\n", r); } \
if (!cpu->DataWrite32(offset , cpu->R[r ], RWFlags_Nonseq)) return; \ cpu->DataWrite32 (offset , cpu->R[r ]); \
if (!cpu->DataWrite32(offset+4, cpu->R[r+1], 0)) return; \ cpu->DataWrite32S(offset+4, cpu->R[r+1]); \
cpu->AddCycles_CD(); cpu->AddCycles_CD();
#define A_STRD_POST \ #define A_STRD_POST \
if (cpu->Num != 0) return; \ if (cpu->Num != 0) return; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
u32 r = (cpu->CurInstr>>12) & 0xF; \ u32 r = (cpu->CurInstr>>12) & 0xF; \
if (r&1) printf("!! MISALIGNED STRD_POST %d\n", r); \ if (r&1) { r--; printf("!! MISALIGNED LDRD_POST %d\n", r); } \
if (!cpu->DataWrite32(offset , cpu->R[r ], RWFlags_Nonseq)) return; \ cpu->DataWrite32 (offset , cpu->R[r ]); \
if (!cpu->DataWrite32(offset+4, cpu->R[r+1], 0)) return; \ cpu->DataWrite32S(offset+4, cpu->R[r+1]); \
cpu->AddCycles_CD(); cpu->AddCycles_CD();
#define A_LDRH \ #define A_LDRH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
if (!cpu->DataRead16(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataRead16(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRH PC %08X\n", cpu->R[15]); \ if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRH PC %08X\n", cpu->R[15]); \
#define A_LDRH_POST \ #define A_LDRH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
if (!cpu->DataRead16(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataRead16(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRH PC %08X\n", cpu->R[15]); \ if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRH PC %08X\n", cpu->R[15]); \
#define A_LDRSB \ #define A_LDRSB \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
if (!cpu->DataRead8(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataRead8(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s8)cpu->R[(cpu->CurInstr>>12) & 0xF]; \ cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s8)cpu->R[(cpu->CurInstr>>12) & 0xF]; \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSB PC %08X\n", cpu->R[15]); \ if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSB PC %08X\n", cpu->R[15]); \
@ -295,7 +295,7 @@ A_IMPLEMENT_WB_LDRSTR(LDRB)
#define A_LDRSB_POST \ #define A_LDRSB_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
if (!cpu->DataRead8(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataRead8(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s8)cpu->R[(cpu->CurInstr>>12) & 0xF]; \ cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s8)cpu->R[(cpu->CurInstr>>12) & 0xF]; \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSB PC %08X\n", cpu->R[15]); \ if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSB PC %08X\n", cpu->R[15]); \
@ -303,7 +303,7 @@ A_IMPLEMENT_WB_LDRSTR(LDRB)
#define A_LDRSH \ #define A_LDRSH \
offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \ offset += cpu->R[(cpu->CurInstr>>16) & 0xF]; \
if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \ if (cpu->CurInstr & (1<<21)) cpu->R[(cpu->CurInstr>>16) & 0xF] = offset; \
if (!cpu->DataRead16(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataRead16(offset, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s16)cpu->R[(cpu->CurInstr>>12) & 0xF]; \ cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s16)cpu->R[(cpu->CurInstr>>12) & 0xF]; \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSH PC %08X\n", cpu->R[15]); \ if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSH PC %08X\n", cpu->R[15]); \
@ -311,7 +311,7 @@ A_IMPLEMENT_WB_LDRSTR(LDRB)
#define A_LDRSH_POST \ #define A_LDRSH_POST \
u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 addr = cpu->R[(cpu->CurInstr>>16) & 0xF]; \
cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \ cpu->R[(cpu->CurInstr>>16) & 0xF] += offset; \
if (!cpu->DataRead16(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF], RWFlags_Nonseq)) return; \ cpu->DataRead16(addr, &cpu->R[(cpu->CurInstr>>12) & 0xF]); \
cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s16)cpu->R[(cpu->CurInstr>>12) & 0xF]; \ cpu->R[(cpu->CurInstr>>12) & 0xF] = (s32)(s16)cpu->R[(cpu->CurInstr>>12) & 0xF]; \
cpu->AddCycles_CDI(); \ cpu->AddCycles_CDI(); \
if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSH PC %08X\n", cpu->R[15]); \ if (((cpu->CurInstr>>12) & 0xF) == 15) printf("!! LDRSH PC %08X\n", cpu->R[15]); \
@ -357,11 +357,11 @@ void A_SWP(ARM* cpu)
u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rm = cpu->R[cpu->CurInstr & 0xF];
u32 val; u32 val;
if (!cpu->DataRead32(base, &val, RWFlags_Nonseq)) return; cpu->DataRead32(base, &val);
cpu->R[(cpu->CurInstr >> 12) & 0xF] = ROR(val, 8*(base&0x3)); cpu->R[(cpu->CurInstr >> 12) & 0xF] = ROR(val, 8*(base&0x3));
u32 numD = cpu->DataCycles; u32 numD = cpu->DataCycles;
if (!cpu->DataWrite32(base, rm, RWFlags_Nonseq)) return; cpu->DataWrite32(base, rm);
cpu->DataCycles += numD; cpu->DataCycles += numD;
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
@ -372,10 +372,10 @@ void A_SWPB(ARM* cpu)
u32 base = cpu->R[(cpu->CurInstr >> 16) & 0xF]; u32 base = cpu->R[(cpu->CurInstr >> 16) & 0xF];
u32 rm = cpu->R[cpu->CurInstr & 0xF] & 0xFF; u32 rm = cpu->R[cpu->CurInstr & 0xF] & 0xFF;
if (!cpu->DataRead8(base, &cpu->R[(cpu->CurInstr >> 12) & 0xF], RWFlags_Nonseq)) return; cpu->DataRead8(base, &cpu->R[(cpu->CurInstr >> 12) & 0xF]);
u32 numD = cpu->DataCycles; u32 numD = cpu->DataCycles;
if (!cpu->DataWrite8(base, rm, RWFlags_Nonseq)) return; cpu->DataWrite8(base, rm);
cpu->DataCycles += numD; cpu->DataCycles += numD;
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
@ -389,7 +389,7 @@ void A_LDM(ARM* cpu)
u32 base = cpu->R[baseid]; u32 base = cpu->R[baseid];
u32 wbbase; u32 wbbase;
u32 preinc = (cpu->CurInstr & (1<<24)); u32 preinc = (cpu->CurInstr & (1<<24));
u32 flags = RWFlags_Nonseq; bool first = true;
if (!(cpu->CurInstr & (1<<23))) if (!(cpu->CurInstr & (1<<23)))
{ {
@ -416,8 +416,9 @@ void A_LDM(ARM* cpu)
if (cpu->CurInstr & (1<<i)) if (cpu->CurInstr & (1<<i))
{ {
if (preinc) base += 4; if (preinc) base += 4;
if (!cpu->DataRead32(base, &cpu->R[i], flags)) return; if (first) cpu->DataRead32 (base, &cpu->R[i]);
flags &= ~RWFlags_Nonseq; else cpu->DataRead32S(base, &cpu->R[i]);
first = false;
if (!preinc) base += 4; if (!preinc) base += 4;
} }
} }
@ -426,7 +427,8 @@ void A_LDM(ARM* cpu)
{ {
u32 pc; u32 pc;
if (preinc) base += 4; if (preinc) base += 4;
if (!cpu->DataRead32(base, &pc, flags)) return; if (first) cpu->DataRead32 (base, &pc);
else cpu->DataRead32S(base, &pc);
if (!preinc) base += 4; if (!preinc) base += 4;
if (cpu->Num == 1) if (cpu->Num == 1)
@ -466,7 +468,7 @@ void A_STM(ARM* cpu)
u32 base = cpu->R[baseid]; u32 base = cpu->R[baseid];
u32 oldbase = base; u32 oldbase = base;
u32 preinc = (cpu->CurInstr & (1<<24)); u32 preinc = (cpu->CurInstr & (1<<24));
u32 flags = RWFlags_Nonseq; bool first = true;
if (!(cpu->CurInstr & (1<<23))) if (!(cpu->CurInstr & (1<<23)))
{ {
@ -500,19 +502,17 @@ void A_STM(ARM* cpu)
{ {
if (preinc) base += 4; if (preinc) base += 4;
bool res;
if (i == baseid && !isbanked) if (i == baseid && !isbanked)
{ {
if ((cpu->Num == 0) || (!(cpu->CurInstr & ((1<<i)-1)))) if ((cpu->Num == 0) || (!(cpu->CurInstr & ((1<<i)-1))))
res = cpu->DataWrite32(base, oldbase, flags); first ? cpu->DataWrite32(base, oldbase) : cpu->DataWrite32S(base, oldbase);
else else
res = cpu->DataWrite32(base, base, flags); // checkme first ? cpu->DataWrite32(base, base) : cpu->DataWrite32S(base, base); // checkme
} }
else else
res = cpu->DataWrite32(base, cpu->R[i], flags); first ? cpu->DataWrite32(base, cpu->R[i]) : cpu->DataWrite32S(base, cpu->R[i]);
if (!res) return; first = false;
flags &= ~RWFlags_Nonseq;
if (!preinc) base += 4; if (!preinc) base += 4;
} }
@ -537,7 +537,7 @@ void A_STM(ARM* cpu)
void T_LDR_PCREL(ARM* cpu) void T_LDR_PCREL(ARM* cpu)
{ {
u32 addr = (cpu->R[15] & ~0x2) + ((cpu->CurInstr & 0xFF) << 2); u32 addr = (cpu->R[15] & ~0x2) + ((cpu->CurInstr & 0xFF) << 2);
if (!cpu->DataRead32(addr, &cpu->R[(cpu->CurInstr >> 8) & 0x7], RWFlags_Nonseq)) return; cpu->DataRead32(addr, &cpu->R[(cpu->CurInstr >> 8) & 0x7]);
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
} }
@ -546,7 +546,7 @@ void T_LDR_PCREL(ARM* cpu)
void T_STR_REG(ARM* cpu) void T_STR_REG(ARM* cpu)
{ {
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
if (!cpu->DataWrite32(addr, cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataWrite32(addr, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD(); cpu->AddCycles_CD();
} }
@ -554,7 +554,7 @@ void T_STR_REG(ARM* cpu)
void T_STRB_REG(ARM* cpu) void T_STRB_REG(ARM* cpu)
{ {
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
if (!cpu->DataWrite8(addr, cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataWrite8(addr, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD(); cpu->AddCycles_CD();
} }
@ -564,7 +564,7 @@ void T_LDR_REG(ARM* cpu)
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
u32 val; u32 val;
if (!cpu->DataRead32(addr, &val, RWFlags_Nonseq)) return; cpu->DataRead32(addr, &val);
cpu->R[cpu->CurInstr & 0x7] = ROR(val, 8*(addr&0x3)); cpu->R[cpu->CurInstr & 0x7] = ROR(val, 8*(addr&0x3));
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
@ -573,7 +573,7 @@ void T_LDR_REG(ARM* cpu)
void T_LDRB_REG(ARM* cpu) void T_LDRB_REG(ARM* cpu)
{ {
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
if (!cpu->DataRead8(addr, &cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataRead8(addr, &cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
} }
@ -582,7 +582,7 @@ void T_LDRB_REG(ARM* cpu)
void T_STRH_REG(ARM* cpu) void T_STRH_REG(ARM* cpu)
{ {
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
if (!cpu->DataWrite16(addr, cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataWrite16(addr, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD(); cpu->AddCycles_CD();
} }
@ -590,7 +590,7 @@ void T_STRH_REG(ARM* cpu)
void T_LDRSB_REG(ARM* cpu) void T_LDRSB_REG(ARM* cpu)
{ {
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
if (!cpu->DataRead8(addr, &cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataRead8(addr, &cpu->R[cpu->CurInstr & 0x7]);
cpu->R[cpu->CurInstr & 0x7] = (s32)(s8)cpu->R[cpu->CurInstr & 0x7]; cpu->R[cpu->CurInstr & 0x7] = (s32)(s8)cpu->R[cpu->CurInstr & 0x7];
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
@ -599,7 +599,7 @@ void T_LDRSB_REG(ARM* cpu)
void T_LDRH_REG(ARM* cpu) void T_LDRH_REG(ARM* cpu)
{ {
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
if (!cpu->DataRead16(addr, &cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataRead16(addr, &cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
} }
@ -607,7 +607,7 @@ void T_LDRH_REG(ARM* cpu)
void T_LDRSH_REG(ARM* cpu) void T_LDRSH_REG(ARM* cpu)
{ {
u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 addr = cpu->R[(cpu->CurInstr >> 3) & 0x7] + cpu->R[(cpu->CurInstr >> 6) & 0x7];
if (!cpu->DataRead16(addr, &cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataRead16(addr, &cpu->R[cpu->CurInstr & 0x7]);
cpu->R[cpu->CurInstr & 0x7] = (s32)(s16)cpu->R[cpu->CurInstr & 0x7]; cpu->R[cpu->CurInstr & 0x7] = (s32)(s16)cpu->R[cpu->CurInstr & 0x7];
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
@ -619,7 +619,7 @@ void T_STR_IMM(ARM* cpu)
u32 offset = (cpu->CurInstr >> 4) & 0x7C; u32 offset = (cpu->CurInstr >> 4) & 0x7C;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7]; offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
if (!cpu->DataWrite32(offset, cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataWrite32(offset, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD(); cpu->AddCycles_CD();
} }
@ -629,7 +629,7 @@ void T_LDR_IMM(ARM* cpu)
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7]; offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
u32 val; u32 val;
if (!cpu->DataRead32(offset, &val, RWFlags_Nonseq)) return; cpu->DataRead32(offset, &val);
cpu->R[cpu->CurInstr & 0x7] = ROR(val, 8*(offset&0x3)); cpu->R[cpu->CurInstr & 0x7] = ROR(val, 8*(offset&0x3));
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
} }
@ -639,7 +639,7 @@ void T_STRB_IMM(ARM* cpu)
u32 offset = (cpu->CurInstr >> 6) & 0x1F; u32 offset = (cpu->CurInstr >> 6) & 0x1F;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7]; offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
if (!cpu->DataWrite8(offset, cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataWrite8(offset, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD(); cpu->AddCycles_CD();
} }
@ -648,7 +648,7 @@ void T_LDRB_IMM(ARM* cpu)
u32 offset = (cpu->CurInstr >> 6) & 0x1F; u32 offset = (cpu->CurInstr >> 6) & 0x1F;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7]; offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
if (!cpu->DataRead8(offset, &cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataRead8(offset, &cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
} }
@ -658,7 +658,7 @@ void T_STRH_IMM(ARM* cpu)
u32 offset = (cpu->CurInstr >> 5) & 0x3E; u32 offset = (cpu->CurInstr >> 5) & 0x3E;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7]; offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
if (!cpu->DataWrite16(offset, cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataWrite16(offset, cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CD(); cpu->AddCycles_CD();
} }
@ -667,7 +667,7 @@ void T_LDRH_IMM(ARM* cpu)
u32 offset = (cpu->CurInstr >> 5) & 0x3E; u32 offset = (cpu->CurInstr >> 5) & 0x3E;
offset += cpu->R[(cpu->CurInstr >> 3) & 0x7]; offset += cpu->R[(cpu->CurInstr >> 3) & 0x7];
if (!cpu->DataRead16(offset, &cpu->R[cpu->CurInstr & 0x7], RWFlags_Nonseq)) return; cpu->DataRead16(offset, &cpu->R[cpu->CurInstr & 0x7]);
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
} }
@ -677,7 +677,7 @@ void T_STR_SPREL(ARM* cpu)
u32 offset = (cpu->CurInstr << 2) & 0x3FC; u32 offset = (cpu->CurInstr << 2) & 0x3FC;
offset += cpu->R[13]; offset += cpu->R[13];
if (!cpu->DataWrite32(offset, cpu->R[(cpu->CurInstr >> 8) & 0x7], RWFlags_Nonseq)) return; cpu->DataWrite32(offset, cpu->R[(cpu->CurInstr >> 8) & 0x7]);
cpu->AddCycles_CD(); cpu->AddCycles_CD();
} }
@ -686,7 +686,7 @@ void T_LDR_SPREL(ARM* cpu)
u32 offset = (cpu->CurInstr << 2) & 0x3FC; u32 offset = (cpu->CurInstr << 2) & 0x3FC;
offset += cpu->R[13]; offset += cpu->R[13];
if (!cpu->DataRead32(offset, &cpu->R[(cpu->CurInstr >> 8) & 0x7], RWFlags_Nonseq)) return; cpu->DataRead32(offset, &cpu->R[(cpu->CurInstr >> 8) & 0x7]);
cpu->AddCycles_CDI(); cpu->AddCycles_CDI();
} }
@ -694,7 +694,7 @@ void T_LDR_SPREL(ARM* cpu)
void T_PUSH(ARM* cpu) void T_PUSH(ARM* cpu)
{ {
int nregs = 0; int nregs = 0;
u32 flags = RWFlags_Nonseq; bool first = true;
for (int i = 0; i < 8; i++) for (int i = 0; i < 8; i++)
{ {
@ -713,15 +713,17 @@ void T_PUSH(ARM* cpu)
{ {
if (cpu->CurInstr & (1<<i)) if (cpu->CurInstr & (1<<i))
{ {
if (!cpu->DataWrite32(base, cpu->R[i], flags)) return; if (first) cpu->DataWrite32 (base, cpu->R[i]);
flags &= ~RWFlags_Nonseq; else cpu->DataWrite32S(base, cpu->R[i]);
first = false;
base += 4; base += 4;
} }
} }
if (cpu->CurInstr & (1<<8)) if (cpu->CurInstr & (1<<8))
{ {
if (!cpu->DataWrite32(base, cpu->R[14], flags)) return; if (first) cpu->DataWrite32 (base, cpu->R[14]);
else cpu->DataWrite32S(base, cpu->R[14]);
} }
cpu->AddCycles_CD(); cpu->AddCycles_CD();
@ -730,14 +732,15 @@ void T_PUSH(ARM* cpu)
void T_POP(ARM* cpu) void T_POP(ARM* cpu)
{ {
u32 base = cpu->R[13]; u32 base = cpu->R[13];
u32 flags = RWFlags_Nonseq; bool first = true;
for (int i = 0; i < 8; i++) for (int i = 0; i < 8; i++)
{ {
if (cpu->CurInstr & (1<<i)) if (cpu->CurInstr & (1<<i))
{ {
if (!cpu->DataRead32(base, &cpu->R[i], flags)) return; if (first) cpu->DataRead32 (base, &cpu->R[i]);
flags &= ~RWFlags_Nonseq; else cpu->DataRead32S(base, &cpu->R[i]);
first = false;
base += 4; base += 4;
} }
} }
@ -745,7 +748,8 @@ void T_POP(ARM* cpu)
if (cpu->CurInstr & (1<<8)) if (cpu->CurInstr & (1<<8))
{ {
u32 pc; u32 pc;
if (!cpu->DataRead32(base, &pc, flags)) return; if (first) cpu->DataRead32 (base, &pc);
else cpu->DataRead32S(base, &pc);
if (cpu->Num==1) pc |= 0x1; if (cpu->Num==1) pc |= 0x1;
cpu->JumpTo(pc); cpu->JumpTo(pc);
base += 4; base += 4;
@ -758,14 +762,15 @@ void T_POP(ARM* cpu)
void T_STMIA(ARM* cpu) void T_STMIA(ARM* cpu)
{ {
u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7]; u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7];
u32 flags = RWFlags_Nonseq; bool first = true;
for (int i = 0; i < 8; i++) for (int i = 0; i < 8; i++)
{ {
if (cpu->CurInstr & (1<<i)) if (cpu->CurInstr & (1<<i))
{ {
if (!cpu->DataWrite32(base, cpu->R[i], flags)) return; if (first) cpu->DataWrite32 (base, cpu->R[i]);
flags &= ~RWFlags_Nonseq; else cpu->DataWrite32S(base, cpu->R[i]);
first = false;
base += 4; base += 4;
} }
} }
@ -778,14 +783,15 @@ void T_STMIA(ARM* cpu)
void T_LDMIA(ARM* cpu) void T_LDMIA(ARM* cpu)
{ {
u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7]; u32 base = cpu->R[(cpu->CurInstr >> 8) & 0x7];
u32 flags = RWFlags_Nonseq; bool first = true;
for (int i = 0; i < 8; i++) for (int i = 0; i < 8; i++)
{ {
if (cpu->CurInstr & (1<<i)) if (cpu->CurInstr & (1<<i))
{ {
if (!cpu->DataRead32(base, &cpu->R[i], flags)) return; if (first) cpu->DataRead32 (base, &cpu->R[i]);
flags &= ~RWFlags_Nonseq; else cpu->DataRead32S(base, &cpu->R[i]);
first = false;
base += 4; base += 4;
} }
} }

View File

@ -22,6 +22,11 @@
#include "ARM.h" #include "ARM.h"
// access timing for cached regions
// this would be an average between cache hits and cache misses
const int kDataCacheTiming = 2;
const int kCodeCacheTiming = 1;
void ARMv5::CP15Reset() void ARMv5::CP15Reset()
{ {
@ -211,6 +216,47 @@ void ARMv5::UpdatePURegions()
codecache >>= 1; codecache >>= 1;
datacache >>= 1; datacache >>= 1;
datawrite >>= 1; datawrite >>= 1;
// TODO: this will not be enough if they change their PU regions after the intial setup
//UpdateRegionTimings(start<<12, end<<12);
}
UpdateRegionTimings(0x00000000, 0xFFFFFFFF);
}
void ARMv5::UpdateRegionTimings(u32 addrstart, u32 addrend)
{
addrstart >>= 12;
addrend >>= 12;
if (addrend == 0xFFFFF) addrend++;
for (u32 i = addrstart; i < addrend; i++)
{
u8 pu = PU_Map[i];
u8* bustimings = NDS::ARM9MemTimings[i >> 2];
if (pu & 0x40)
{
MemTimings[i][0] = kCodeCacheTiming;
}
else
{
MemTimings[i][0] = bustimings[2] << ClockShift;
}
if (pu & 0x10)
{
MemTimings[i][1] = kDataCacheTiming;
MemTimings[i][2] = kDataCacheTiming;
MemTimings[i][3] = kDataCacheTiming;
}
else
{
MemTimings[i][1] = bustimings[0] << ClockShift;
MemTimings[i][2] = bustimings[2] << ClockShift;
MemTimings[i][3] = bustimings[3] << ClockShift;
}
} }
} }
@ -460,280 +506,183 @@ u32 ARMv5::CP15Read(u32 id)
u32 ARMv5::CodeRead32(u32 addr) u32 ARMv5::CodeRead32(u32 addr)
{ {
u8 pu = PU_Map[addr>>12];
if (addr < ITCMSize) if (addr < ITCMSize)
{ {
CodeRegion = NDS::Region9_ITCM;
return *(u32*)&ITCM[addr & 0x7FFF]; return *(u32*)&ITCM[addr & 0x7FFF];
} }
u32 ret; return NDS::ARM9Read32(addr);
CodeRegion = NDS::ARM9Read32(addr, &ret);
if (pu & 0x40) CodeRegion = NDS::Region9_ICache;
return ret;
} }
bool ARMv5::DataRead8(u32 addr, u32* val, u32 flags) void ARMv5::DataRead8(u32 addr, u32* val)
{ {
u8 pu = PU_Map[addr>>12];
/*if (!(pu & 0x01))
{
DataAbort();
return false;
}*/
if (addr < ITCMSize) if (addr < ITCMSize)
{ {
DataRegion = NDS::Region9_ITCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*val = *(u8*)&ITCM[addr & 0x7FFF]; *val = *(u8*)&ITCM[addr & 0x7FFF];
return true; return;
} }
if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize)) if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize))
{ {
DataRegion = NDS::Region9_DTCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*val = *(u8*)&DTCM[(addr - DTCMBase) & 0x3FFF]; *val = *(u8*)&DTCM[(addr - DTCMBase) & 0x3FFF];
return true; return;
} }
DataRegion = NDS::ARM9Read8(addr, val); *val = NDS::ARM9Read8(addr);
if (pu & 0x10) DataCycles = MemTimings[addr >> 12][1];
{
DataRegion = NDS::Region9_DCache;
if (flags & RWFlags_Nonseq) DataCycles = 2;
else DataCycles += 2;
}
else
{
if (flags & RWFlags_Nonseq) DataCycles = NDS::ARM9MemTimings[DataRegion][0];
else DataCycles += NDS::ARM9MemTimings[DataRegion][1];
}
return true;
} }
bool ARMv5::DataRead16(u32 addr, u32* val, u32 flags) void ARMv5::DataRead16(u32 addr, u32* val)
{ {
addr &= ~1; addr &= ~1;
u8 pu = PU_Map[addr>>12];
/*if (!(pu & 0x01))
{
DataAbort();
return false;
}*/
if (addr < ITCMSize) if (addr < ITCMSize)
{ {
DataRegion = NDS::Region9_ITCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*val = *(u16*)&ITCM[addr & 0x7FFF]; *val = *(u16*)&ITCM[addr & 0x7FFF];
return true; return;
} }
if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize)) if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize))
{ {
DataRegion = NDS::Region9_DTCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*val = *(u16*)&DTCM[(addr - DTCMBase) & 0x3FFF]; *val = *(u16*)&DTCM[(addr - DTCMBase) & 0x3FFF];
return true; return;
} }
DataRegion = NDS::ARM9Read16(addr, val); *val = NDS::ARM9Read16(addr);
if (pu & 0x10) DataCycles = MemTimings[addr >> 12][1];
{
DataRegion = NDS::Region9_DCache;
if (flags & RWFlags_Nonseq) DataCycles = 2;
else DataCycles += 2;
}
else
{
if (flags & RWFlags_Nonseq) DataCycles = NDS::ARM9MemTimings[DataRegion][0];
else DataCycles += NDS::ARM9MemTimings[DataRegion][1];
}
return true;
} }
bool ARMv5::DataRead32(u32 addr, u32* val, u32 flags) void ARMv5::DataRead32(u32 addr, u32* val)
{ {
addr &= ~3; addr &= ~3;
u8 pu = PU_Map[addr>>12];
/*if (!(pu & 0x01))
{
DataAbort();
return false;
}*/
if (addr < ITCMSize) if (addr < ITCMSize)
{ {
DataRegion = NDS::Region9_ITCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*val = *(u32*)&ITCM[addr & 0x7FFF]; *val = *(u32*)&ITCM[addr & 0x7FFF];
return true; return;
} }
if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize)) if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize))
{ {
DataRegion = NDS::Region9_DTCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*val = *(u32*)&DTCM[(addr - DTCMBase) & 0x3FFF]; *val = *(u32*)&DTCM[(addr - DTCMBase) & 0x3FFF];
return true; return;
} }
DataRegion = NDS::ARM9Read32(addr, val); *val = NDS::ARM9Read32(addr);
if (pu & 0x10) DataCycles = MemTimings[addr >> 12][2];
{
DataRegion = NDS::Region9_DCache;
if (flags & RWFlags_Nonseq) DataCycles = 2;
else DataCycles += 2;
}
else
{
if (flags & RWFlags_Nonseq) DataCycles = NDS::ARM9MemTimings[DataRegion][0];
else DataCycles += NDS::ARM9MemTimings[DataRegion][1];
}
return true;
} }
bool ARMv5::DataWrite8(u32 addr, u8 val, u32 flags) void ARMv5::DataRead32S(u32 addr, u32* val)
{ {
u8 pu = PU_Map[addr>>12]; addr &= ~3;
/*if (!(pu & 0x02))
{
DataAbort();
return false;
}*/
if (addr < ITCMSize) if (addr < ITCMSize)
{ {
DataRegion = NDS::Region9_ITCM; DataCycles += 1;
if (flags & RWFlags_Nonseq) DataCycles = 1; *val = *(u32*)&ITCM[addr & 0x7FFF];
else DataCycles += 1; return;
*(u8*)&ITCM[addr & 0x7FFF] = val;
return true;
} }
if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize)) if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize))
{ {
DataRegion = NDS::Region9_DTCM; DataCycles += 1;
if (flags & RWFlags_Nonseq) DataCycles = 1; *val = *(u32*)&DTCM[(addr - DTCMBase) & 0x3FFF];
else DataCycles += 1; return;
*(u8*)&DTCM[(addr - DTCMBase) & 0x3FFF] = val;
return true;
} }
DataRegion = NDS::ARM9Write8(addr, val); *val = NDS::ARM9Read32(addr);
if (pu & 0x20) DataCycles += MemTimings[addr >> 12][3];
{
DataRegion = NDS::Region9_DCache;
if (flags & RWFlags_Nonseq) DataCycles = 2;
else DataCycles += 2;
}
else
{
if (flags & RWFlags_Nonseq) DataCycles = NDS::ARM9MemTimings[DataRegion][0];
else DataCycles += NDS::ARM9MemTimings[DataRegion][1];
}
return true;
} }
bool ARMv5::DataWrite16(u32 addr, u16 val, u32 flags) void ARMv5::DataWrite8(u32 addr, u8 val)
{
if (addr < ITCMSize)
{
DataCycles = 1;
*(u8*)&ITCM[addr & 0x7FFF] = val;
return;
}
if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize))
{
DataCycles = 1;
*(u8*)&DTCM[(addr - DTCMBase) & 0x3FFF] = val;
return;
}
NDS::ARM9Write8(addr, val);
DataCycles = MemTimings[addr >> 12][1];
}
void ARMv5::DataWrite16(u32 addr, u16 val)
{ {
addr &= ~1; addr &= ~1;
u8 pu = PU_Map[addr>>12];
/*if (!(pu & 0x02))
{
DataAbort();
return false;
}*/
if (addr < ITCMSize) if (addr < ITCMSize)
{ {
DataRegion = NDS::Region9_ITCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*(u16*)&ITCM[addr & 0x7FFF] = val; *(u16*)&ITCM[addr & 0x7FFF] = val;
return true; return;
} }
if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize)) if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize))
{ {
DataRegion = NDS::Region9_DTCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*(u16*)&DTCM[(addr - DTCMBase) & 0x3FFF] = val; *(u16*)&DTCM[(addr - DTCMBase) & 0x3FFF] = val;
return true; return;
} }
DataRegion = NDS::ARM9Write16(addr, val); NDS::ARM9Write16(addr, val);
if (pu & 0x20) DataCycles = MemTimings[addr >> 12][1];
{
DataRegion = NDS::Region9_DCache;
if (flags & RWFlags_Nonseq) DataCycles = 2;
else DataCycles += 2;
}
else
{
if (flags & RWFlags_Nonseq) DataCycles = NDS::ARM9MemTimings[DataRegion][0];
else DataCycles += NDS::ARM9MemTimings[DataRegion][1];
}
return true;
} }
bool ARMv5::DataWrite32(u32 addr, u32 val, u32 flags) void ARMv5::DataWrite32(u32 addr, u32 val)
{ {
addr &= ~3; addr &= ~3;
u8 pu = PU_Map[addr>>12];
/*if (!(pu & 0x02))
{
DataAbort();
return false;
}*/
if (addr < ITCMSize) if (addr < ITCMSize)
{ {
DataRegion = NDS::Region9_ITCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*(u32*)&ITCM[addr & 0x7FFF] = val; *(u32*)&ITCM[addr & 0x7FFF] = val;
return true; return;
} }
if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize)) if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize))
{ {
DataRegion = NDS::Region9_DTCM; DataCycles = 1;
if (flags & RWFlags_Nonseq) DataCycles = 1;
else DataCycles += 1;
*(u32*)&DTCM[(addr - DTCMBase) & 0x3FFF] = val; *(u32*)&DTCM[(addr - DTCMBase) & 0x3FFF] = val;
return true; return;
} }
DataRegion = NDS::ARM9Write32(addr, val); NDS::ARM9Write32(addr, val);
if (pu & 0x20) DataCycles = MemTimings[addr >> 12][2];
}
void ARMv5::DataWrite32S(u32 addr, u32 val)
{
addr &= ~3;
if (addr < ITCMSize)
{ {
DataRegion = NDS::Region9_DCache; DataCycles += 1;
if (flags & RWFlags_Nonseq) DataCycles = 2; *(u32*)&ITCM[addr & 0x7FFF] = val;
else DataCycles += 2; return;
} }
else if (addr >= DTCMBase && addr < (DTCMBase + DTCMSize))
{ {
if (flags & RWFlags_Nonseq) DataCycles = NDS::ARM9MemTimings[DataRegion][0]; DataCycles += 1;
else DataCycles += NDS::ARM9MemTimings[DataRegion][1]; *(u32*)&DTCM[(addr - DTCMBase) & 0x3FFF] = val;
return;
} }
return true;
NDS::ARM9Write32(addr, val);
DataCycles += MemTimings[addr >> 12][3];
} }
void ARMv5::GetCodeMemRegion(u32 addr, NDS::MemRegion* region) void ARMv5::GetCodeMemRegion(u32 addr, NDS::MemRegion* region)
{ {
if (addr < ITCMSize) if (addr < ITCMSize)
{ {
region->Region = NDS::Region9_ITCM;
region->Mem = ITCM; region->Mem = ITCM;
region->Mask = 0x7FFF; region->Mask = 0x7FFF;
return; return;

View File

@ -203,17 +203,17 @@ s32 DMA::Run(s32 cycles)
{ {
if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02) if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02)
{ {
unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 12][0] + NDS::ARM9MemTimings[CurDstAddr >> 12][0]; unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 14][0] + NDS::ARM9MemTimings[CurDstAddr >> 14][0];
} }
else else
{ {
unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 12][1] + NDS::ARM9MemTimings[CurDstAddr >> 12][1]; unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 14][1] + NDS::ARM9MemTimings[CurDstAddr >> 14][1];
if ((CurSrcAddr >> 24) == (CurDstAddr >> 24)) if ((CurSrcAddr >> 24) == (CurDstAddr >> 24))
unitcycles++; unitcycles++;
if (burststart) if (burststart)
{ {
cycles -= (NDS::ARM9MemTimings[CurSrcAddr >> 12][0] + NDS::ARM9MemTimings[CurDstAddr >> 12][0]); cycles -= (NDS::ARM9MemTimings[CurSrcAddr >> 14][0] + NDS::ARM9MemTimings[CurDstAddr >> 14][0]);
cycles += unitcycles; cycles += unitcycles;
} }
} }
@ -222,38 +222,38 @@ s32 DMA::Run(s32 cycles)
{ {
if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02) if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02)
{ {
unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 17][0] + NDS::ARM7MemTimings[CurDstAddr >> 17][0]; unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 15][0] + NDS::ARM7MemTimings[CurDstAddr >> 15][0];
} }
else else
{ {
unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 17][1] + NDS::ARM7MemTimings[CurDstAddr >> 17][1]; unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 15][1] + NDS::ARM7MemTimings[CurDstAddr >> 15][1];
if ((CurSrcAddr >> 23) == (CurDstAddr >> 23)) if ((CurSrcAddr >> 23) == (CurDstAddr >> 23))
unitcycles++; unitcycles++;
if (burststart) if (burststart)
{ {
cycles -= (NDS::ARM7MemTimings[CurSrcAddr >> 17][0] + NDS::ARM7MemTimings[CurDstAddr >> 17][0]); cycles -= (NDS::ARM7MemTimings[CurSrcAddr >> 15][0] + NDS::ARM7MemTimings[CurDstAddr >> 15][0]);
cycles += unitcycles; cycles += unitcycles;
} }
} }
} }
int (*readfn)(u32,u32*) = CPU ? NDS::ARM7Read16 : NDS::ARM9Read16; u16 (*readfn)(u32) = CPU ? NDS::ARM7Read16 : NDS::ARM9Read16;
int (*writefn)(u32,u16) = CPU ? NDS::ARM7Write16 : NDS::ARM9Write16; void (*writefn)(u32,u16) = CPU ? NDS::ARM7Write16 : NDS::ARM9Write16;
while (IterCount > 0 && cycles > 0 && !Stall) while (IterCount > 0 && !Stall)
{ {
u32 val; writefn(CurDstAddr, readfn(CurSrcAddr));
readfn(CurSrcAddr, &val);
writefn(CurDstAddr, val);
cycles -= unitcycles; cycles -= unitcycles;
NDS::RunTimingCriticalDevices(CPU, c); NDS::RunTimingCriticalDevices(CPU, unitcycles);
CurSrcAddr += SrcAddrInc<<1; CurSrcAddr += SrcAddrInc<<1;
CurDstAddr += DstAddrInc<<1; CurDstAddr += DstAddrInc<<1;
IterCount--; IterCount--;
RemCount--; RemCount--;
if (cycles < 0) break;
} }
} }
else else
@ -263,11 +263,11 @@ s32 DMA::Run(s32 cycles)
{ {
if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02) if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02)
{ {
unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 12][2] + NDS::ARM9MemTimings[CurDstAddr >> 12][2]; unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 14][2] + NDS::ARM9MemTimings[CurDstAddr >> 14][2];
} }
else else
{ {
unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 12][3] + NDS::ARM9MemTimings[CurDstAddr >> 12][3]; unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 14][3] + NDS::ARM9MemTimings[CurDstAddr >> 14][3];
if ((CurSrcAddr >> 24) == (CurDstAddr >> 24)) if ((CurSrcAddr >> 24) == (CurDstAddr >> 24))
unitcycles++; unitcycles++;
else if ((CurSrcAddr >> 24) == 0x02) else if ((CurSrcAddr >> 24) == 0x02)
@ -275,7 +275,7 @@ s32 DMA::Run(s32 cycles)
if (burststart) if (burststart)
{ {
cycles -= (NDS::ARM9MemTimings[CurSrcAddr >> 12][2] + NDS::ARM9MemTimings[CurDstAddr >> 12][2]); cycles -= (NDS::ARM9MemTimings[CurSrcAddr >> 14][2] + NDS::ARM9MemTimings[CurDstAddr >> 14][2]);
cycles += unitcycles; cycles += unitcycles;
} }
} }
@ -284,11 +284,11 @@ s32 DMA::Run(s32 cycles)
{ {
if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02) if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02)
{ {
unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 17][2] + NDS::ARM7MemTimings[CurDstAddr >> 17][2]; unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 15][2] + NDS::ARM7MemTimings[CurDstAddr >> 15][2];
} }
else else
{ {
unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 17][3] + NDS::ARM7MemTimings[CurDstAddr >> 17][3]; unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 15][3] + NDS::ARM7MemTimings[CurDstAddr >> 15][3];
if ((CurSrcAddr >> 23) == (CurDstAddr >> 23)) if ((CurSrcAddr >> 23) == (CurDstAddr >> 23))
unitcycles++; unitcycles++;
else if ((CurSrcAddr >> 24) == 0x02) else if ((CurSrcAddr >> 24) == 0x02)
@ -296,28 +296,28 @@ s32 DMA::Run(s32 cycles)
if (burststart) if (burststart)
{ {
cycles -= (NDS::ARM7MemTimings[CurSrcAddr >> 17][2] + NDS::ARM7MemTimings[CurDstAddr >> 17][2]); cycles -= (NDS::ARM7MemTimings[CurSrcAddr >> 15][2] + NDS::ARM7MemTimings[CurDstAddr >> 15][2]);
cycles += unitcycles; cycles += unitcycles;
} }
} }
} }
int (*readfn)(u32,u32*) = CPU ? NDS::ARM7Read32 : NDS::ARM9Read32; u32 (*readfn)(u32) = CPU ? NDS::ARM7Read32 : NDS::ARM9Read32;
int (*writefn)(u32,u32) = CPU ? NDS::ARM7Write32 : NDS::ARM9Write32; void (*writefn)(u32,u32) = CPU ? NDS::ARM7Write32 : NDS::ARM9Write32;
while (IterCount > 0 && cycles > 0 && !Stall) while (IterCount > 0 && !Stall)
{ {
u32 val; writefn(CurDstAddr, readfn(CurSrcAddr));
readfn(CurSrcAddr, &val);
writefn(CurDstAddr, val);
cycles -= unitcycles; cycles -= unitcycles;
NDS::RunTimingCriticalDevices(CPU, c); NDS::RunTimingCriticalDevices(CPU, unitcycles);
CurSrcAddr += SrcAddrInc<<2; CurSrcAddr += SrcAddrInc<<2;
CurDstAddr += DstAddrInc<<2; CurDstAddr += DstAddrInc<<2;
IterCount--; IterCount--;
RemCount--; RemCount--;
if (cycles < 0) break;
} }
} }

View File

@ -813,7 +813,7 @@ void StartScanline(u32 line)
GPU2D_A->VBlank(); GPU2D_A->VBlank();
GPU2D_B->VBlank(); GPU2D_B->VBlank();
GPU3D::VBlank(); GPU3D::VBlank();
printf("VBlank. PC=%08X\n", NDS::GetPC(0)); //printf("VBlank. PC=%08X\n", NDS::GetPC(0));
} }
else if (VCount == 144) else if (VCount == 144)
{ {

View File

@ -56,7 +56,7 @@ namespace NDS
// //
// timings for GBA slot and wifi are set up at runtime // timings for GBA slot and wifi are set up at runtime
u8 ARM9MemTimings[0x100000][4]; u8 ARM9MemTimings[0x40000][4];
u8 ARM7MemTimings[0x20000][4]; u8 ARM7MemTimings[0x20000][4];
ARMv5* ARM9; ARMv5* ARM9;
@ -134,6 +134,8 @@ bool Running;
void DivDone(u32 param); void DivDone(u32 param);
void SqrtDone(u32 param); void SqrtDone(u32 param);
void RunTimer(u32 tid, s32 cycles); void RunTimer(u32 tid, s32 cycles);
void SetWifiWaitCnt(u16 val);
void SetGBASlotTimings();
bool Init() bool Init()
@ -185,10 +187,10 @@ void DeInit()
void SetARM9RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq, int seq) void SetARM9RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq, int seq)
{ {
addrstart >>= 12; addrstart >>= 14;
addrend >>= 12; addrend >>= 14;
if (addrend == 0xFFFFF) addrend++; if (addrend == 0x3FFFF) addrend++;
int N16, S16, N32, S32; int N16, S16, N32, S32;
N16 = nonseq; N16 = nonseq;
@ -211,12 +213,14 @@ void SetARM9RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq,
ARM9MemTimings[i][2] = N32; ARM9MemTimings[i][2] = N32;
ARM9MemTimings[i][3] = S32; ARM9MemTimings[i][3] = S32;
} }
ARM9->UpdateRegionTimings(addrstart<<14, addrend<<14);
} }
void SetARM7RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq, int seq) void SetARM7RegionTimings(u32 addrstart, u32 addrend, int buswidth, int nonseq, int seq)
{ {
addrstart >>= 17; addrstart >>= 15;
addrend >>= 17; addrend >>= 15;
if (addrend == 0x1FFFF) addrend++; if (addrend == 0x1FFFF) addrend++;
@ -400,6 +404,9 @@ void Reset()
fclose(f); fclose(f);
} }
ARM9->SetClockShift(1);
ARM7->SetClockShift(0);
InitTimings(); InitTimings();
memset(MainRAM, 0, MAIN_RAM_SIZE); memset(MainRAM, 0, MAIN_RAM_SIZE);
@ -469,9 +476,6 @@ void Reset()
SPI::Reset(); SPI::Reset();
RTC::Reset(); RTC::Reset();
Wifi::Reset(); Wifi::Reset();
ARM9->SetClockShift(1);
ARM7->SetClockShift(0);
} }
void Stop() void Stop()
@ -1449,7 +1453,7 @@ u16 ARM9Read16(u32 addr)
return 0; return 0;
} }
int ARM9Read32(u32 addr, u32* val) u32 ARM9Read32(u32 addr)
{ {
if ((addr & 0xFFFFF000) == 0xFFFF0000) if ((addr & 0xFFFFF000) == 0xFFFF0000)
{ {
@ -1739,7 +1743,7 @@ u16 ARM7Read16(u32 addr)
return 0; return 0;
} }
int ARM7Read32(u32 addr, u32* val) u32 ARM7Read32(u32 addr)
{ {
if (addr < 0x00004000) if (addr < 0x00004000)
{ {

View File

@ -94,7 +94,7 @@ typedef struct
} MemRegion; } MemRegion;
extern u8 ARM9MemTimings[0x100000][4]; extern u8 ARM9MemTimings[0x40000][4];
extern u8 ARM7MemTimings[0x20000][4]; extern u8 ARM7MemTimings[0x20000][4];
// hax // hax