mirror of
https://github.com/melonDS-emu/melonDS.git
synced 2025-07-22 22:01:06 -06:00
Allow for a more modular renderer backends (#990)
* Draft GPU3D renderer modularization * Update sources C++ standard to C++17 The top-level `CMakeLists.txt` is already using the C++17 standard. * Move GLCompositor into class type Some other misc fixes to push towards better modularity * Make renderer-implementation types move-only These types are going to be holding onto handles of GPU-side resources and shouldn't ever be copied around. * Fix OSX: Remove 'register' storage class specifier `register` has been removed in C++17... But this keyword hasn't done anything in years anyways. OSX builds consider this "warning" an error and it stops the whole build. * Add RestartFrame to Renderer3D interface * Move Accelerated property to Renderer3D interface There are points in the code base where we do: `renderer != 0` to know if we are feeding an openGL renderer. Rather than that we can instead just have this be a property of the renderer itself. With this pattern a renderer can just say how it wants its data to come in rather than have everyone know that they're talking to an OpenGL renderer. * Remove Accelerated flag from GPU * Move 2D_Soft interface in separate header Also make the current 2D engine an "owned" unique_ptr. * Update alignment attribute to standard alignas Uses standardized `alignas` rather than compiler-specific attributes. https://en.cppreference.com/w/cpp/language/alignas * Fix Clang: alignas specifier Alignment must be specified before the array to align the entire array. https://en.cppreference.com/w/cpp/language/alignas * Converted Renderer3D Accelerated to variable This flag is checked a lot during scanline rasterization. So rather than having an expensive vtable-lookup call during mainline rendering code, it is now a public constant bool type that is written to only once during Renderer3D initialization.
This commit is contained in:
@ -16,82 +16,43 @@
|
||||
with melonDS. If not, see http://www.gnu.org/licenses/.
|
||||
*/
|
||||
|
||||
#include "GPU3D_Soft.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include "NDS.h"
|
||||
#include "GPU.h"
|
||||
#include "Config.h"
|
||||
#include "Platform.h"
|
||||
|
||||
|
||||
namespace GPU3D
|
||||
{
|
||||
namespace SoftRenderer
|
||||
{
|
||||
|
||||
// buffer dimensions are 258x194 to add a offscreen 1px border
|
||||
// which simplifies edge marking tests
|
||||
// buffer is duplicated to keep track of the two topmost pixels
|
||||
// TODO: check if the hardware can accidentally plot pixels
|
||||
// offscreen in that border
|
||||
|
||||
const int ScanlineWidth = 258;
|
||||
const int NumScanlines = 194;
|
||||
const int BufferSize = ScanlineWidth * NumScanlines;
|
||||
const int FirstPixelOffset = ScanlineWidth + 1;
|
||||
|
||||
u32 ColorBuffer[BufferSize * 2];
|
||||
u32 DepthBuffer[BufferSize * 2];
|
||||
u32 AttrBuffer[BufferSize * 2];
|
||||
|
||||
// attribute buffer:
|
||||
// bit0-3: edge flags (left/right/top/bottom)
|
||||
// bit4: backfacing flag
|
||||
// bit8-12: antialiasing alpha
|
||||
// bit15: fog enable
|
||||
// bit16-21: polygon ID for translucent pixels
|
||||
// bit22: translucent flag
|
||||
// bit24-29: polygon ID for opaque pixels
|
||||
|
||||
u8 StencilBuffer[256*2];
|
||||
bool PrevIsShadowMask;
|
||||
|
||||
bool Enabled;
|
||||
|
||||
bool FrameIdentical;
|
||||
|
||||
// threading
|
||||
|
||||
bool Threaded;
|
||||
Platform::Thread* RenderThread;
|
||||
bool RenderThreadRunning;
|
||||
bool RenderThreadRendering;
|
||||
Platform::Semaphore* Sema_RenderStart;
|
||||
Platform::Semaphore* Sema_RenderDone;
|
||||
Platform::Semaphore* Sema_ScanlineCount;
|
||||
|
||||
void RenderThreadFunc();
|
||||
|
||||
|
||||
void StopRenderThread()
|
||||
void SoftRenderer::StopRenderThread()
|
||||
{
|
||||
if (RenderThreadRunning)
|
||||
{
|
||||
RenderThreadRunning = false;
|
||||
Platform::Semaphore_Post(Sema_RenderStart);
|
||||
Platform::Thread_Wait(RenderThread);
|
||||
Platform::Thread_Free(RenderThread);
|
||||
// Platform::Thread_Wait(RenderThread);
|
||||
// Platform::Thread_Free(RenderThread);
|
||||
RenderThread.join();
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void SetupRenderThread()
|
||||
void SoftRenderer::SetupRenderThread()
|
||||
{
|
||||
if (Threaded)
|
||||
{
|
||||
if (!RenderThreadRunning)
|
||||
{
|
||||
RenderThreadRunning = true;
|
||||
RenderThread = Platform::Thread_Create(RenderThreadFunc);
|
||||
//RenderThread = Platform::Thread_Create(RenderThreadFunc);
|
||||
RenderThread = std::thread(&SoftRenderer::RenderThreadFunc, this);
|
||||
}
|
||||
|
||||
// otherwise more than one frame can be queued up at once
|
||||
@ -113,7 +74,13 @@ void SetupRenderThread()
|
||||
}
|
||||
|
||||
|
||||
bool Init()
|
||||
SoftRenderer::SoftRenderer()
|
||||
: Renderer3D(false)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
bool SoftRenderer::Init()
|
||||
{
|
||||
Sema_RenderStart = Platform::Semaphore_Create();
|
||||
Sema_RenderDone = Platform::Semaphore_Create();
|
||||
@ -126,7 +93,7 @@ bool Init()
|
||||
return true;
|
||||
}
|
||||
|
||||
void DeInit()
|
||||
void SoftRenderer::DeInit()
|
||||
{
|
||||
StopRenderThread();
|
||||
|
||||
@ -135,7 +102,7 @@ void DeInit()
|
||||
Platform::Semaphore_Free(Sema_ScanlineCount);
|
||||
}
|
||||
|
||||
void Reset()
|
||||
void SoftRenderer::Reset()
|
||||
{
|
||||
memset(ColorBuffer, 0, BufferSize * 2 * 4);
|
||||
memset(DepthBuffer, 0, BufferSize * 2 * 4);
|
||||
@ -146,428 +113,13 @@ void Reset()
|
||||
SetupRenderThread();
|
||||
}
|
||||
|
||||
void SetRenderSettings(GPU::RenderSettings& settings)
|
||||
void SoftRenderer::SetRenderSettings(GPU::RenderSettings& settings)
|
||||
{
|
||||
Threaded = settings.Soft_Threaded;
|
||||
SetupRenderThread();
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Notes on the interpolator:
|
||||
//
|
||||
// This is a theory on how the DS hardware interpolates values. It matches hardware output
|
||||
// in the tests I did, but the hardware may be doing it differently. You never know.
|
||||
//
|
||||
// Assuming you want to perspective-correctly interpolate a variable named A across two points
|
||||
// in a typical rasterizer, you would calculate A/W and 1/W at each point, interpolate linearly,
|
||||
// then divide A/W by 1/W to recover the correct A value.
|
||||
//
|
||||
// The DS GPU approximates interpolation by calculating a perspective-correct interpolation
|
||||
// between 0 and 1, then using the result as a factor to linearly interpolate the actual
|
||||
// vertex attributes. The factor has 9 bits of precision when interpolating along Y and
|
||||
// 8 bits along X.
|
||||
//
|
||||
// There's a special path for when the two W values are equal: it directly does linear
|
||||
// interpolation, avoiding precision loss from the aforementioned approximation.
|
||||
// Which is desirable when using the GPU to draw 2D graphics.
|
||||
|
||||
template<int dir>
|
||||
class Interpolator
|
||||
{
|
||||
public:
|
||||
Interpolator() {}
|
||||
Interpolator(s32 x0, s32 x1, s32 w0, s32 w1)
|
||||
{
|
||||
Setup(x0, x1, w0, w1);
|
||||
}
|
||||
|
||||
void Setup(s32 x0, s32 x1, s32 w0, s32 w1)
|
||||
{
|
||||
this->x0 = x0;
|
||||
this->x1 = x1;
|
||||
this->xdiff = x1 - x0;
|
||||
|
||||
// calculate reciprocals for linear mode and Z interpolation
|
||||
// TODO eventually: use a faster reciprocal function?
|
||||
if (this->xdiff != 0)
|
||||
this->xrecip = (1<<30) / this->xdiff;
|
||||
else
|
||||
this->xrecip = 0;
|
||||
this->xrecip_z = this->xrecip >> 8;
|
||||
|
||||
// linear mode is used if both W values are equal and have
|
||||
// low-order bits cleared (0-6 along X, 1-6 along Y)
|
||||
u32 mask = dir ? 0x7E : 0x7F;
|
||||
if ((w0 == w1) && !(w0 & mask) && !(w1 & mask))
|
||||
this->linear = true;
|
||||
else
|
||||
this->linear = false;
|
||||
|
||||
if (dir)
|
||||
{
|
||||
// along Y
|
||||
|
||||
if ((w0 & 0x1) && !(w1 & 0x1))
|
||||
{
|
||||
this->w0n = w0 - 1;
|
||||
this->w0d = w0 + 1;
|
||||
this->w1d = w1;
|
||||
}
|
||||
else
|
||||
{
|
||||
this->w0n = w0 & 0xFFFE;
|
||||
this->w0d = w0 & 0xFFFE;
|
||||
this->w1d = w1 & 0xFFFE;
|
||||
}
|
||||
|
||||
this->shift = 9;
|
||||
}
|
||||
else
|
||||
{
|
||||
// along X
|
||||
|
||||
this->w0n = w0;
|
||||
this->w0d = w0;
|
||||
this->w1d = w1;
|
||||
|
||||
this->shift = 8;
|
||||
}
|
||||
}
|
||||
|
||||
void SetX(s32 x)
|
||||
{
|
||||
x -= x0;
|
||||
this->x = x;
|
||||
if (xdiff != 0 && !linear)
|
||||
{
|
||||
s64 num = ((s64)x * w0n) << shift;
|
||||
s32 den = (x * w0d) + ((xdiff-x) * w1d);
|
||||
|
||||
// this seems to be a proper division on hardware :/
|
||||
// I haven't been able to find cases that produce imperfect output
|
||||
if (den == 0) yfactor = 0;
|
||||
else yfactor = (s32)(num / den);
|
||||
}
|
||||
}
|
||||
|
||||
s32 Interpolate(s32 y0, s32 y1)
|
||||
{
|
||||
if (xdiff == 0 || y0 == y1) return y0;
|
||||
|
||||
if (!linear)
|
||||
{
|
||||
// perspective-correct approx. interpolation
|
||||
if (y0 < y1)
|
||||
return y0 + (((y1-y0) * yfactor) >> shift);
|
||||
else
|
||||
return y1 + (((y0-y1) * ((1<<shift)-yfactor)) >> shift);
|
||||
}
|
||||
else
|
||||
{
|
||||
// linear interpolation
|
||||
// checkme: the rounding bias there (3<<24) is a guess
|
||||
if (y0 < y1)
|
||||
return y0 + ((((s64)(y1-y0) * x * xrecip) + (3<<24)) >> 30);
|
||||
else
|
||||
return y1 + ((((s64)(y0-y1) * (xdiff-x) * xrecip) + (3<<24)) >> 30);
|
||||
}
|
||||
}
|
||||
|
||||
s32 InterpolateZ(s32 z0, s32 z1, bool wbuffer)
|
||||
{
|
||||
if (xdiff == 0 || z0 == z1) return z0;
|
||||
|
||||
if (wbuffer)
|
||||
{
|
||||
// W-buffering: perspective-correct approx. interpolation
|
||||
if (z0 < z1)
|
||||
return z0 + (((s64)(z1-z0) * yfactor) >> shift);
|
||||
else
|
||||
return z1 + (((s64)(z0-z1) * ((1<<shift)-yfactor)) >> shift);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Z-buffering: linear interpolation
|
||||
// still doesn't quite match hardware...
|
||||
s32 base, disp, factor;
|
||||
|
||||
if (z0 < z1)
|
||||
{
|
||||
base = z0;
|
||||
disp = z1 - z0;
|
||||
factor = x;
|
||||
}
|
||||
else
|
||||
{
|
||||
base = z1;
|
||||
disp = z0 - z1,
|
||||
factor = xdiff - x;
|
||||
}
|
||||
|
||||
if (dir)
|
||||
{
|
||||
int shift = 0;
|
||||
while (disp > 0x3FF)
|
||||
{
|
||||
disp >>= 1;
|
||||
shift++;
|
||||
}
|
||||
|
||||
return base + ((((s64)disp * factor * xrecip_z) >> 22) << shift);
|
||||
}
|
||||
else
|
||||
{
|
||||
disp >>= 9;
|
||||
return base + (((s64)disp * factor * xrecip_z) >> 13);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
s32 x0, x1, xdiff, x;
|
||||
|
||||
int shift;
|
||||
bool linear;
|
||||
|
||||
s32 xrecip, xrecip_z;
|
||||
s32 w0n, w0d, w1d;
|
||||
|
||||
u32 yfactor;
|
||||
};
|
||||
|
||||
|
||||
template<int side>
|
||||
class Slope
|
||||
{
|
||||
public:
|
||||
Slope() {}
|
||||
|
||||
s32 SetupDummy(s32 x0)
|
||||
{
|
||||
if (side)
|
||||
{
|
||||
dx = -0x40000;
|
||||
x0--;
|
||||
}
|
||||
else
|
||||
{
|
||||
dx = 0;
|
||||
}
|
||||
|
||||
this->x0 = x0;
|
||||
this->xmin = x0;
|
||||
this->xmax = x0;
|
||||
|
||||
Increment = 0;
|
||||
XMajor = false;
|
||||
|
||||
Interp.Setup(0, 0, 0, 0);
|
||||
Interp.SetX(0);
|
||||
|
||||
xcov_incr = 0;
|
||||
|
||||
return x0;
|
||||
}
|
||||
|
||||
s32 Setup(s32 x0, s32 x1, s32 y0, s32 y1, s32 w0, s32 w1, s32 y)
|
||||
{
|
||||
this->x0 = x0;
|
||||
this->y = y;
|
||||
|
||||
if (x1 > x0)
|
||||
{
|
||||
this->xmin = x0;
|
||||
this->xmax = x1-1;
|
||||
this->Negative = false;
|
||||
}
|
||||
else if (x1 < x0)
|
||||
{
|
||||
this->xmin = x1;
|
||||
this->xmax = x0-1;
|
||||
this->Negative = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
this->xmin = x0;
|
||||
if (side) this->xmin--;
|
||||
this->xmax = this->xmin;
|
||||
this->Negative = false;
|
||||
}
|
||||
|
||||
xlen = xmax+1 - xmin;
|
||||
ylen = y1 - y0;
|
||||
|
||||
// slope increment has a 18-bit fractional part
|
||||
// note: for some reason, x/y isn't calculated directly,
|
||||
// instead, 1/y is calculated and then multiplied by x
|
||||
// TODO: this is still not perfect (see for example x=169 y=33)
|
||||
if (ylen == 0)
|
||||
Increment = 0;
|
||||
else if (ylen == xlen)
|
||||
Increment = 0x40000;
|
||||
else
|
||||
{
|
||||
s32 yrecip = (1<<18) / ylen;
|
||||
Increment = (x1-x0) * yrecip;
|
||||
if (Increment < 0) Increment = -Increment;
|
||||
}
|
||||
|
||||
XMajor = (Increment > 0x40000);
|
||||
|
||||
if (side)
|
||||
{
|
||||
// right
|
||||
|
||||
if (XMajor) dx = Negative ? (0x20000 + 0x40000) : (Increment - 0x20000);
|
||||
else if (Increment != 0) dx = Negative ? 0x40000 : 0;
|
||||
else dx = -0x40000;
|
||||
}
|
||||
else
|
||||
{
|
||||
// left
|
||||
|
||||
if (XMajor) dx = Negative ? ((Increment - 0x20000) + 0x40000) : 0x20000;
|
||||
else if (Increment != 0) dx = Negative ? 0x40000 : 0;
|
||||
else dx = 0;
|
||||
}
|
||||
|
||||
dx += (y - y0) * Increment;
|
||||
|
||||
s32 x = XVal();
|
||||
|
||||
if (XMajor)
|
||||
{
|
||||
if (side) Interp.Setup(x0-1, x1-1, w0, w1); // checkme
|
||||
else Interp.Setup(x0, x1, w0, w1);
|
||||
Interp.SetX(x);
|
||||
|
||||
// used for calculating AA coverage
|
||||
xcov_incr = (ylen << 10) / xlen;
|
||||
}
|
||||
else
|
||||
{
|
||||
Interp.Setup(y0, y1, w0, w1);
|
||||
Interp.SetX(y);
|
||||
}
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
s32 Step()
|
||||
{
|
||||
dx += Increment;
|
||||
y++;
|
||||
|
||||
s32 x = XVal();
|
||||
if (XMajor)
|
||||
{
|
||||
Interp.SetX(x);
|
||||
}
|
||||
else
|
||||
{
|
||||
Interp.SetX(y);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
s32 XVal()
|
||||
{
|
||||
s32 ret;
|
||||
if (Negative) ret = x0 - (dx >> 18);
|
||||
else ret = x0 + (dx >> 18);
|
||||
|
||||
if (ret < xmin) ret = xmin;
|
||||
else if (ret > xmax) ret = xmax;
|
||||
return ret;
|
||||
}
|
||||
|
||||
void EdgeParams_XMajor(s32* length, s32* coverage)
|
||||
{
|
||||
if (side ^ Negative)
|
||||
*length = (dx >> 18) - ((dx-Increment) >> 18);
|
||||
else
|
||||
*length = ((dx+Increment) >> 18) - (dx >> 18);
|
||||
|
||||
// for X-major edges, we return the coverage
|
||||
// for the first pixel, and the increment for
|
||||
// further pixels on the same scanline
|
||||
s32 startx = dx >> 18;
|
||||
if (Negative) startx = xlen - startx;
|
||||
if (side) startx = startx - *length + 1;
|
||||
|
||||
s32 startcov = (((startx << 10) + 0x1FF) * ylen) / xlen;
|
||||
*coverage = (1<<31) | ((startcov & 0x3FF) << 12) | (xcov_incr & 0x3FF);
|
||||
}
|
||||
|
||||
void EdgeParams_YMajor(s32* length, s32* coverage)
|
||||
{
|
||||
*length = 1;
|
||||
|
||||
if (Increment == 0)
|
||||
{
|
||||
*coverage = 31;
|
||||
}
|
||||
else
|
||||
{
|
||||
s32 cov = ((dx >> 9) + (Increment >> 10)) >> 4;
|
||||
if ((cov >> 5) != (dx >> 18)) cov = 31;
|
||||
cov &= 0x1F;
|
||||
if (!(side ^ Negative)) cov = 0x1F - cov;
|
||||
|
||||
*coverage = cov;
|
||||
}
|
||||
}
|
||||
|
||||
void EdgeParams(s32* length, s32* coverage)
|
||||
{
|
||||
if (XMajor)
|
||||
return EdgeParams_XMajor(length, coverage);
|
||||
else
|
||||
return EdgeParams_YMajor(length, coverage);
|
||||
}
|
||||
|
||||
s32 Increment;
|
||||
bool Negative;
|
||||
bool XMajor;
|
||||
Interpolator<1> Interp;
|
||||
|
||||
private:
|
||||
s32 x0, xmin, xmax;
|
||||
s32 xlen, ylen;
|
||||
s32 dx;
|
||||
s32 y;
|
||||
|
||||
s32 xcov_incr;
|
||||
s32 ycoverage, ycov_incr;
|
||||
};
|
||||
|
||||
struct RendererPolygon
|
||||
{
|
||||
Polygon* PolyData;
|
||||
|
||||
Slope<0> SlopeL;
|
||||
Slope<1> SlopeR;
|
||||
s32 XL, XR;
|
||||
u32 CurVL, CurVR;
|
||||
u32 NextVL, NextVR;
|
||||
|
||||
};
|
||||
|
||||
RendererPolygon PolygonList[2048];
|
||||
|
||||
template <typename T>
|
||||
inline T ReadVRAM_Texture(u32 addr)
|
||||
{
|
||||
return *(T*)&GPU::VRAMFlat_Texture[addr & 0x7FFFF];
|
||||
}
|
||||
template <typename T>
|
||||
inline T ReadVRAM_TexPal(u32 addr)
|
||||
{
|
||||
return *(T*)&GPU::VRAMFlat_TexPal[addr & 0x1FFFF];
|
||||
}
|
||||
|
||||
void TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha)
|
||||
void SoftRenderer::TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha)
|
||||
{
|
||||
u32 vramaddr = (texparam & 0xFFFF) << 3;
|
||||
|
||||
@ -873,7 +425,7 @@ u32 AlphaBlend(u32 srccolor, u32 dstcolor, u32 alpha)
|
||||
return srcR | (srcG << 8) | (srcB << 16) | (dstalpha << 24);
|
||||
}
|
||||
|
||||
u32 RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t)
|
||||
u32 SoftRenderer::RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t)
|
||||
{
|
||||
u8 r, g, b, a;
|
||||
|
||||
@ -981,7 +533,7 @@ u32 RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t)
|
||||
return r | (g << 8) | (b << 16) | (a << 24);
|
||||
}
|
||||
|
||||
void PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 shadow)
|
||||
void SoftRenderer::PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 shadow)
|
||||
{
|
||||
u32 dstattr = AttrBuffer[pixeladdr];
|
||||
u32 attr = (polyattr & 0xE0F0) | ((polyattr >> 8) & 0xFF0000) | (1<<22) | (dstattr & 0xFF001F0F);
|
||||
@ -1020,7 +572,7 @@ void PlotTranslucentPixel(u32 pixeladdr, u32 color, u32 z, u32 polyattr, u32 sha
|
||||
AttrBuffer[pixeladdr] = attr;
|
||||
}
|
||||
|
||||
void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y)
|
||||
void SoftRenderer::SetupPolygonLeftEdge(SoftRenderer::RendererPolygon* rp, s32 y)
|
||||
{
|
||||
Polygon* polygon = rp->PolyData;
|
||||
|
||||
@ -1047,7 +599,7 @@ void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y)
|
||||
polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL], y);
|
||||
}
|
||||
|
||||
void SetupPolygonRightEdge(RendererPolygon* rp, s32 y)
|
||||
void SoftRenderer::SetupPolygonRightEdge(SoftRenderer::RendererPolygon* rp, s32 y)
|
||||
{
|
||||
Polygon* polygon = rp->PolyData;
|
||||
|
||||
@ -1074,7 +626,7 @@ void SetupPolygonRightEdge(RendererPolygon* rp, s32 y)
|
||||
polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR], y);
|
||||
}
|
||||
|
||||
void SetupPolygon(RendererPolygon* rp, Polygon* polygon)
|
||||
void SoftRenderer::SetupPolygon(SoftRenderer::RendererPolygon* rp, Polygon* polygon)
|
||||
{
|
||||
u32 nverts = polygon->NumVertices;
|
||||
|
||||
@ -1127,7 +679,7 @@ void SetupPolygon(RendererPolygon* rp, Polygon* polygon)
|
||||
}
|
||||
}
|
||||
|
||||
void RenderShadowMaskScanline(RendererPolygon* rp, s32 y)
|
||||
void SoftRenderer::RenderShadowMaskScanline(RendererPolygon* rp, s32 y)
|
||||
{
|
||||
Polygon* polygon = rp->PolyData;
|
||||
|
||||
@ -1340,7 +892,7 @@ void RenderShadowMaskScanline(RendererPolygon* rp, s32 y)
|
||||
rp->XR = rp->SlopeR.Step();
|
||||
}
|
||||
|
||||
void RenderPolygonScanline(RendererPolygon* rp, s32 y)
|
||||
void SoftRenderer::RenderPolygonScanline(RendererPolygon* rp, s32 y)
|
||||
{
|
||||
Polygon* polygon = rp->PolyData;
|
||||
|
||||
@ -1755,7 +1307,7 @@ void RenderPolygonScanline(RendererPolygon* rp, s32 y)
|
||||
rp->XR = rp->SlopeR.Step();
|
||||
}
|
||||
|
||||
void RenderScanline(s32 y, int npolys)
|
||||
void SoftRenderer::RenderScanline(s32 y, int npolys)
|
||||
{
|
||||
for (int i = 0; i < npolys; i++)
|
||||
{
|
||||
@ -1772,8 +1324,7 @@ void RenderScanline(s32 y, int npolys)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
u32 CalculateFogDensity(u32 pixeladdr)
|
||||
u32 SoftRenderer::CalculateFogDensity(u32 pixeladdr)
|
||||
{
|
||||
u32 z = DepthBuffer[pixeladdr];
|
||||
u32 densityid, densityfrac;
|
||||
@ -1812,7 +1363,7 @@ u32 CalculateFogDensity(u32 pixeladdr)
|
||||
return density;
|
||||
}
|
||||
|
||||
void ScanlineFinalPass(s32 y)
|
||||
void SoftRenderer::ScanlineFinalPass(s32 y)
|
||||
{
|
||||
// to consider:
|
||||
// clearing all polygon fog flags if the master flag isn't set?
|
||||
@ -1981,7 +1532,7 @@ void ScanlineFinalPass(s32 y)
|
||||
}
|
||||
}
|
||||
|
||||
void ClearBuffers()
|
||||
void SoftRenderer::ClearBuffers()
|
||||
{
|
||||
u32 clearz = ((RenderClearAttr2 & 0x7FFF) * 0x200) + 0x1FF;
|
||||
u32 polyid = RenderClearAttr1 & 0x3F000000; // this sets the opaque polygonID
|
||||
@ -2055,7 +1606,7 @@ void ClearBuffers()
|
||||
u32 a = (RenderClearAttr1 >> 16) & 0x1F;
|
||||
u32 color = r | (g << 8) | (b << 16) | (a << 24);
|
||||
|
||||
polyid |= (RenderClearAttr1 & 0x8000);
|
||||
polyid |= (RenderClearAttr1 & 0x8000);
|
||||
|
||||
for (int y = 0; y < ScanlineWidth*192; y+=ScanlineWidth)
|
||||
{
|
||||
@ -2070,7 +1621,7 @@ void ClearBuffers()
|
||||
}
|
||||
}
|
||||
|
||||
void RenderPolygons(bool threaded, Polygon** polygons, int npolys)
|
||||
void SoftRenderer::RenderPolygons(bool threaded, Polygon** polygons, int npolys)
|
||||
{
|
||||
int j = 0;
|
||||
for (int i = 0; i < npolys; i++)
|
||||
@ -2096,13 +1647,13 @@ void RenderPolygons(bool threaded, Polygon** polygons, int npolys)
|
||||
Platform::Semaphore_Post(Sema_ScanlineCount);
|
||||
}
|
||||
|
||||
void VCount144()
|
||||
void SoftRenderer::VCount144()
|
||||
{
|
||||
if (RenderThreadRunning)
|
||||
Platform::Semaphore_Wait(Sema_RenderDone);
|
||||
}
|
||||
|
||||
void RenderFrame()
|
||||
void SoftRenderer::RenderFrame()
|
||||
{
|
||||
auto textureDirty = GPU::VRAMDirty_Texture.DeriveState(GPU::VRAMMap_Texture);
|
||||
auto texPalDirty = GPU::VRAMDirty_TexPal.DeriveState(GPU::VRAMMap_TexPal);
|
||||
@ -2123,7 +1674,12 @@ void RenderFrame()
|
||||
}
|
||||
}
|
||||
|
||||
void RenderThreadFunc()
|
||||
void SoftRenderer::RestartFrame()
|
||||
{
|
||||
SetupRenderThread();
|
||||
}
|
||||
|
||||
void SoftRenderer::RenderThreadFunc()
|
||||
{
|
||||
for (;;)
|
||||
{
|
||||
@ -2146,7 +1702,7 @@ void RenderThreadFunc()
|
||||
}
|
||||
}
|
||||
|
||||
u32* GetLine(int line)
|
||||
u32* SoftRenderer::GetLine(int line)
|
||||
{
|
||||
if (RenderThreadRunning)
|
||||
{
|
||||
@ -2158,4 +1714,3 @@ u32* GetLine(int line)
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user