/* Copyright 2016-2017 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "NDS.h" #include "GPU.h" #include "Platform.h" namespace GPU3D { namespace SoftRenderer { u32 ColorBuffer[256*192]; u32 DepthBuffer[256*192]; u32 AttrBuffer[256*192]; // attribute buffer: // bit15: fog enable // bit24-29: polygon ID // bit30: translucent flag u8 StencilBuffer[256*2]; // threading void* RenderThread; bool RenderThreadRunning; void* Sema_RenderStart; void* Sema_RenderDone; void* Sema_ScanlineCount; void RenderThreadFunc(); bool Init() { Sema_RenderStart = Platform::Semaphore_Create(); Sema_RenderDone = Platform::Semaphore_Create(); Sema_ScanlineCount = Platform::Semaphore_Create(); RenderThreadRunning = false; return true; } void DeInit() { } void Reset() { memset(ColorBuffer, 0, 256*192 * 4); memset(DepthBuffer, 0, 256*192 * 4); memset(AttrBuffer, 0, 256*192 * 4); // TODO: make it configurable if (!RenderThreadRunning) { RenderThreadRunning = true; RenderThread = Platform::Thread_Create(RenderThreadFunc); } Platform::Semaphore_Post(Sema_RenderStart); } // Notes on the interpolator: // // This is a theory on how the DS hardware interpolates values. It matches hardware output // in the tests I did, but the hardware may be doing it differently. You never know. // // Assuming you want to perspective-correctly interpolate a variable named A across two points // in a typical rasterizer, you would calculate A/W and 1/W at each point, interpolate linearly, // then divide A/W by 1/W to recover the correct A value. // // The DS GPU approximates interpolation by calculating a perspective-correct interpolation // between 0 and 1, then using the result as a factor to linearly interpolate the actual // vertex attributes. The factor has 9 bits of precision when interpolating along Y and // 8 bits along X. // // There's a special path for when the two W values are equal: it directly does linear // interpolation, avoiding precision loss from the aforementioned approximation. // Which is desirable when using the GPU to draw 2D graphics. class Interpolator { public: Interpolator() {} Interpolator(s32 x0, s32 x1, s32 w0, s32 w1, int shift) { Setup(x0, x1, w0, w1, shift); } void Setup(s32 x0, s32 x1, s32 w0, s32 w1, int shift) { this->x0 = x0; this->x1 = x1; this->xdiff = x1 - x0; this->shift = shift; this->w0factor = (s64)w0 * xdiff; this->w1factor = (s64)w1 * xdiff; this->wdiff = w1 - w0; } void SetX(s32 x) { x -= x0; this->x = x; if (xdiff != 0 && wdiff != 0) { s64 num = ((s64)x << (shift + 40)) / w1factor; s64 denw0 = ((s64)(xdiff-x) << 40) / w0factor; s64 denw1 = num >> shift; s64 denom = denw0 + denw1; if (denom == 0) yfactor = 0; else { yfactor = (s32)(num / denom); } } } s32 Interpolate(s32 y0, s32 y1) { if (xdiff == 0) return y0; if (wdiff != 0) return y0 + (((y1 - y0) * yfactor) >> shift); else return y0 + (((y1 - y0) * x) / xdiff); } s32 InterpolateZ(s32 z0, s32 z1, bool wbuffer) { if (xdiff == 0) return z0; if ((wdiff != 0) && wbuffer) return z0 + (((s64)(z1 - z0) * yfactor) >> shift); else return z0 + (((s64)(z1 - z0) * x) / xdiff); } private: s32 x0, x1, xdiff, x; s64 w0factor, w1factor; s32 wdiff; int shift; s32 yfactor; }; class Slope { public: Slope() {} s32 SetupDummy(s32 x0, int side) { if (side) { dx = -0x10000; x0--; } else { dx = 0; } this->x0 = x0; this->xmin = x0; this->xmax = x0; Increment = 0; XMajor = false; Interp.Setup(0, 0, 0, 0, 9); Interp.SetX(0); return x0; } s32 Setup(s32 x0, s32 x1, s32 y0, s32 y1, s32 w0, s32 w1, int side) { this->x0 = x0; this->y = y0; if (x1 > x0) { this->xmin = x0; this->xmax = x1-1; } else if (x1 < x0) { this->xmin = x1; this->xmax = x0-1; } else { this->xmin = x0; if (side) this->xmin--; this->xmax = this->xmin; } if (y0 == y1) Increment = 0; else Increment = ((x1 - x0) << 16) / (y1 - y0); if (Increment < 0) { Increment = -Increment; Negative = true; } else Negative = false; XMajor = (Increment > 0x10000); if (side) { // right if (XMajor) dx = Negative ? (0x8000 + 0x10000) : (Increment - 0x8000); else if (Increment != 0) dx = Negative ? 0x10000 : 0; else dx = -0x10000; } else { // left if (XMajor) dx = Negative ? ((Increment - 0x8000) + 0x10000) : 0x8000; else if (Increment != 0) dx = Negative ? 0x10000 : 0; else dx = 0; } if (XMajor) { if (side) Interp.Setup(x0-1, x1-1, w0, w1, 9); // checkme else Interp.Setup(x0, x1, w0, w1, 9); } else Interp.Setup(y0, y1, w0, w1, 9); s32 x = XVal(); if (XMajor) Interp.SetX(x); else Interp.SetX(y); return x; } s32 Step() { dx += Increment; y++; s32 x = XVal(); if (XMajor) Interp.SetX(x); else Interp.SetX(y); return x; } s32 XVal() { s32 ret; if (Negative) ret = x0 - (dx >> 16); else ret = x0 + (dx >> 16); if (ret < xmin) ret = xmin; else if (ret > xmax) ret = xmax; return ret; } s32 EdgeLimit(int side) { s32 ret; if (side) { if (Negative) ret = x0 - ((dx+Increment) >> 16); else ret = x0 + ((dx-Increment) >> 16); } else { if (Negative) ret = x0 - ((dx-Increment) >> 16); else ret = x0 + ((dx+Increment) >> 16); } return ret; } s32 Increment; bool Negative; bool XMajor; Interpolator Interp; private: s32 x0, xmin, xmax; s32 dx; s32 y; }; typedef struct { Polygon* PolyData; Slope SlopeL, SlopeR; s32 XL, XR; u32 CurVL, CurVR; u32 NextVL, NextVR; } RendererPolygon; RendererPolygon PolygonList[2048]; void TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha) { u32 vramaddr = (texparam & 0xFFFF) << 3; s32 width = 8 << ((texparam >> 20) & 0x7); s32 height = 8 << ((texparam >> 23) & 0x7); s >>= 4; t >>= 4; // texture wrapping // TODO: optimize this somehow // testing shows that it's hardly worth optimizing, actually if (texparam & (1<<16)) { if (texparam & (1<<18)) { if (s & width) s = (width-1) - (s & (width-1)); else s = (s & (width-1)); } else s &= width-1; } else { if (s < 0) s = 0; else if (s >= width) s = width-1; } if (texparam & (1<<17)) { if (texparam & (1<<19)) { if (t & height) t = (height-1) - (t & (height-1)); else t = (t & (height-1)); } else t &= height-1; } else { if (t < 0) t = 0; else if (t >= height) t = height-1; } u8 alpha0; if (texparam & (1<<29)) alpha0 = 0; else alpha0 = 31; switch ((texparam >> 26) & 0x7) { case 1: // A3I5 { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + ((pixel&0x1F)<<1)); *alpha = ((pixel >> 3) & 0x1C) + (pixel >> 6); } break; case 2: // 4-color { vramaddr += (((t * width) + s) >> 2); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); pixel >>= ((s & 0x3) << 1); pixel &= 0x3; texpal <<= 3; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 3: // 16-color { vramaddr += (((t * width) + s) >> 1); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); if (s & 0x1) pixel >>= 4; else pixel &= 0xF; texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 4: // 256-color { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 5: // compressed { vramaddr += ((t & 0x3FC) * (width>>2)) + (s & 0x3FC); vramaddr += (t & 0x3); u32 slot1addr = 0x20000 + ((vramaddr & 0x1FFFC) >> 1); if (vramaddr >= 0x40000) slot1addr += 0x10000; u8 val = GPU::ReadVRAM_Texture(vramaddr); val >>= (2 * (s & 0x3)); u16 palinfo = GPU::ReadVRAM_Texture(slot1addr); u32 paloffset = (palinfo & 0x3FFF) << 2; texpal <<= 4; switch (val & 0x3) { case 0: *color = GPU::ReadVRAM_TexPal(texpal + paloffset); *alpha = 31; break; case 1: *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); *alpha = 31; break; case 2: if ((palinfo >> 14) == 1) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0 + r1) >> 1; u32 g = ((g0 + g1) >> 1) & 0x03E0; u32 b = ((b0 + b1) >> 1) & 0x7C00; *color = r | g | b; } else if ((palinfo >> 14) == 3) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0*5 + r1*3) >> 3; u32 g = ((g0*5 + g1*3) >> 3) & 0x03E0; u32 b = ((b0*5 + b1*3) >> 3) & 0x7C00; *color = r | g | b; } else *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 4); *alpha = 31; break; case 3: if ((palinfo >> 14) == 2) { *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 6); *alpha = 31; } else if ((palinfo >> 14) == 3) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0*3 + r1*5) >> 3; u32 g = ((g0*3 + g1*5) >> 3) & 0x03E0; u32 b = ((b0*3 + b1*5) >> 3) & 0x7C00; *color = r | g | b; *alpha = 31; } else { *color = 0; *alpha = 0; } break; } } break; case 6: // A5I3 { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + ((pixel&0x7)<<1)); *alpha = (pixel >> 3); } break; case 7: // direct color { vramaddr += (((t * width) + s) << 1); *color = GPU::ReadVRAM_Texture(vramaddr); *alpha = (*color & 0x8000) ? 31 : 0; } break; } } template bool DepthTest(s32 oldz, s32 z) { if (func_equal) { s32 diff = oldz - z; if ((u32)(diff + 0x200) <= 0x400) return true; } else if (z < oldz) return true; return false; } u32 RenderPixel(Polygon* polygon, u8 vr, u8 vg, u8 vb, s16 s, s16 t) { u8 r, g, b, a; u32 blendmode = (polygon->Attr >> 4) & 0x3; u32 polyalpha = (polygon->Attr >> 16) & 0x1F; bool wireframe = (polyalpha == 0); if (blendmode == 2) { u16 tooncolor = RenderToonTable[vr >> 1]; vr = (tooncolor << 1) & 0x3E; if (vr) vr++; vg = (tooncolor >> 4) & 0x3E; if (vg) vg++; vb = (tooncolor >> 9) & 0x3E; if (vb) vb++; } if ((RenderDispCnt & (1<<0)) && (((polygon->TexParam >> 26) & 0x7) != 0)) { u8 tr, tg, tb; u16 tcolor; u8 talpha; TextureLookup(polygon->TexParam, polygon->TexPalette, s, t, &tcolor, &talpha); tr = (tcolor << 1) & 0x3E; if (tr) tr++; tg = (tcolor >> 4) & 0x3E; if (tg) tg++; tb = (tcolor >> 9) & 0x3E; if (tb) tb++; if (blendmode & 0x1) { // decal if (talpha == 0) { r = vr; g = vg; b = vb; } else if (talpha == 31) { r = tr; g = tg; b = tb; } else { r = ((tr * talpha) + (vr * (31-talpha))) >> 5; g = ((tg * talpha) + (vg * (31-talpha))) >> 5; b = ((tb * talpha) + (vb * (31-talpha))) >> 5; } a = polyalpha; } else { // modulate r = ((tr+1) * (vr+1) - 1) >> 6; g = ((tg+1) * (vg+1) - 1) >> 6; b = ((tb+1) * (vb+1) - 1) >> 6; a = ((talpha+1) * (polyalpha+1) - 1) >> 5; } } else { r = vr; g = vg; b = vb; a = polyalpha; } if ((blendmode == 2) && (RenderDispCnt & (1<<1))) { r += vr; g += vg; b += vb; if (r > 63) r = 63; if (g > 63) g = 63; if (b > 63) b = 63; } // checkme: can wireframe polygons use texture alpha? if (wireframe) a = 31; return r | (g << 8) | (b << 16) | (a << 24); } void SetupPolygonLeftEdge(RendererPolygon* rp, s32 y) { Polygon* polygon = rp->PolyData; while (y >= polygon->Vertices[rp->NextVL]->FinalPosition[1] && rp->CurVL != polygon->VBottom) { rp->CurVL = rp->NextVL; if (polygon->FacingView) { rp->NextVL = rp->CurVL + 1; if (rp->NextVL >= polygon->NumVertices) rp->NextVL = 0; } else { rp->NextVL = rp->CurVL - 1; if ((s32)rp->NextVL < 0) rp->NextVL = polygon->NumVertices - 1; } } rp->XL = rp->SlopeL.Setup(polygon->Vertices[rp->CurVL]->FinalPosition[0], polygon->Vertices[rp->NextVL]->FinalPosition[0], polygon->Vertices[rp->CurVL]->FinalPosition[1], polygon->Vertices[rp->NextVL]->FinalPosition[1], polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL], 0); } void SetupPolygonRightEdge(RendererPolygon* rp, s32 y) { Polygon* polygon = rp->PolyData; while (y >= polygon->Vertices[rp->NextVR]->FinalPosition[1] && rp->CurVR != polygon->VBottom) { rp->CurVR = rp->NextVR; if (polygon->FacingView) { rp->NextVR = rp->CurVR - 1; if ((s32)rp->NextVR < 0) rp->NextVR = polygon->NumVertices - 1; } else { rp->NextVR = rp->CurVR + 1; if (rp->NextVR >= polygon->NumVertices) rp->NextVR = 0; } } rp->XR = rp->SlopeR.Setup(polygon->Vertices[rp->CurVR]->FinalPosition[0], polygon->Vertices[rp->NextVR]->FinalPosition[0], polygon->Vertices[rp->CurVR]->FinalPosition[1], polygon->Vertices[rp->NextVR]->FinalPosition[1], polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR], 1); } void SetupPolygon(RendererPolygon* rp, Polygon* polygon) { u32 nverts = polygon->NumVertices; u32 vtop = polygon->VTop, vbot = polygon->VBottom; s32 ytop = polygon->YTop, ybot = polygon->YBottom; rp->PolyData = polygon; rp->CurVL = vtop; rp->CurVR = vtop; if (polygon->FacingView) { rp->NextVL = rp->CurVL + 1; if (rp->NextVL >= nverts) rp->NextVL = 0; rp->NextVR = rp->CurVR - 1; if ((s32)rp->NextVR < 0) rp->NextVR = nverts - 1; } else { rp->NextVL = rp->CurVL - 1; if ((s32)rp->NextVL < 0) rp->NextVL = nverts - 1; rp->NextVR = rp->CurVR + 1; if (rp->NextVR >= nverts) rp->NextVR = 0; } if (ybot == ytop) { //ybot++; vtop = 0; vbot = 0; //xtop = 256; xbot = 0; int i; i = 1; if (polygon->Vertices[i]->FinalPosition[0] < polygon->Vertices[vtop]->FinalPosition[0]) vtop = i; if (polygon->Vertices[i]->FinalPosition[0] > polygon->Vertices[vbot]->FinalPosition[0]) vbot = i; i = nverts - 1; if (polygon->Vertices[i]->FinalPosition[0] < polygon->Vertices[vtop]->FinalPosition[0]) vtop = i; if (polygon->Vertices[i]->FinalPosition[0] > polygon->Vertices[vbot]->FinalPosition[0]) vbot = i; rp->CurVL = vtop; rp->NextVL = vtop; rp->CurVR = vbot; rp->NextVR = vbot; rp->XL = rp->SlopeL.SetupDummy(polygon->Vertices[rp->CurVL]->FinalPosition[0], 0); rp->XR = rp->SlopeR.SetupDummy(polygon->Vertices[rp->CurVR]->FinalPosition[0], 1); } else { SetupPolygonLeftEdge(rp, ytop); SetupPolygonRightEdge(rp, ytop); } } void RenderPolygonScanline(RendererPolygon* rp, s32 y) { Polygon* polygon = rp->PolyData; u32 polyalpha = (polygon->Attr >> 16) & 0x1F; bool wireframe = (polyalpha == 0); bool (*fnDepthTest)(s32 oldz, s32 z); if (polygon->Attr & (1<<14)) fnDepthTest = DepthTest; else fnDepthTest = DepthTest; if (polygon->ClearStencil) memset(&StencilBuffer[256 * (y&0x1)], 0, 256); if (polygon->YTop != polygon->YBottom) { if (y >= polygon->Vertices[rp->NextVL]->FinalPosition[1] && rp->CurVL != polygon->VBottom) { SetupPolygonLeftEdge(rp, y); } if (y >= polygon->Vertices[rp->NextVR]->FinalPosition[1] && rp->CurVR != polygon->VBottom) { SetupPolygonRightEdge(rp, y); } } Vertex *vlcur, *vlnext, *vrcur, *vrnext; s32 xstart, xend; Slope* slope_start; Slope* slope_end; xstart = rp->XL; xend = rp->XR; s32 wl = rp->SlopeL.Interp.Interpolate(polygon->FinalW[rp->CurVL], polygon->FinalW[rp->NextVL]); s32 wr = rp->SlopeR.Interp.Interpolate(polygon->FinalW[rp->CurVR], polygon->FinalW[rp->NextVR]); s32 zl = rp->SlopeL.Interp.InterpolateZ(polygon->FinalZ[rp->CurVL], polygon->FinalZ[rp->NextVL], polygon->WBuffer); s32 zr = rp->SlopeR.Interp.InterpolateZ(polygon->FinalZ[rp->CurVR], polygon->FinalZ[rp->NextVR], polygon->WBuffer); // if the left and right edges are swapped, render backwards. // note: we 'forget' to swap the xmajor flags, on purpose // the hardware has the same bug if (xstart > xend) { vlcur = polygon->Vertices[rp->CurVR]; vlnext = polygon->Vertices[rp->NextVR]; vrcur = polygon->Vertices[rp->CurVL]; vrnext = polygon->Vertices[rp->NextVL]; slope_start = &rp->SlopeR; slope_end = &rp->SlopeL; s32 tmp; tmp = xstart; xstart = xend; xend = tmp; tmp = wl; wl = wr; wr = tmp; tmp = zl; zl = zr; zr = tmp; } else { vlcur = polygon->Vertices[rp->CurVL]; vlnext = polygon->Vertices[rp->NextVL]; vrcur = polygon->Vertices[rp->CurVR]; vrnext = polygon->Vertices[rp->NextVR]; slope_start = &rp->SlopeL; slope_end = &rp->SlopeR; } // interpolate attributes along Y s32 rl = slope_start->Interp.Interpolate(vlcur->FinalColor[0], vlnext->FinalColor[0]); s32 gl = slope_start->Interp.Interpolate(vlcur->FinalColor[1], vlnext->FinalColor[1]); s32 bl = slope_start->Interp.Interpolate(vlcur->FinalColor[2], vlnext->FinalColor[2]); s32 sl = slope_start->Interp.Interpolate(vlcur->TexCoords[0], vlnext->TexCoords[0]); s32 tl = slope_start->Interp.Interpolate(vlcur->TexCoords[1], vlnext->TexCoords[1]); s32 rr = slope_end->Interp.Interpolate(vrcur->FinalColor[0], vrnext->FinalColor[0]); s32 gr = slope_end->Interp.Interpolate(vrcur->FinalColor[1], vrnext->FinalColor[1]); s32 br = slope_end->Interp.Interpolate(vrcur->FinalColor[2], vrnext->FinalColor[2]); s32 sr = slope_end->Interp.Interpolate(vrcur->TexCoords[0], vrnext->TexCoords[0]); s32 tr = slope_end->Interp.Interpolate(vrcur->TexCoords[1], vrnext->TexCoords[1]); // calculate edges // // edge fill rules for opaque pixels: // * right edge is filled if slope > 1 // * left edge is filled if slope <= 1 // * edges with slope = 0 are always filled // edges are always filled if the pixels are translucent // in wireframe mode, there are special rules for equal Z (TODO) s32 l_edgeend, r_edgestart; bool l_filledge, r_filledge; if (rp->SlopeL.XMajor) { l_edgeend = slope_start->EdgeLimit(0); if (l_edgeend == xstart) l_edgeend++; l_filledge = slope_start->Negative; } else { l_edgeend = xstart + 1; l_filledge = true; } if (rp->SlopeR.XMajor) { r_edgestart = slope_end->EdgeLimit(1); if (r_edgestart == xend) r_edgestart--; r_filledge = !slope_end->Negative; } else { r_edgestart = xend - 1; r_filledge = slope_end->Increment==0; } int yedge = 0; if (y == polygon->YTop) yedge = 0x4; else if (y == polygon->YBottom-1) yedge = 0x8; Interpolator interpX(xstart, xend+1, wl, wr, 8); for (s32 x = xstart; x <= xend; x++) { if (x < 0) continue; if (x > 255) break; int edge = yedge; if (x < l_edgeend) edge |= 0x1; else if (x > r_edgestart) edge |= 0x2; // wireframe polygons. really ugly, but works if (wireframe && edge==0) { x = r_edgestart + 1; continue; } u32 pixeladdr = (y*256) + x; u32 attr = polygon->Attr & 0x3F008000; // check stencil buffer for shadows if (polygon->IsShadow) { if (StencilBuffer[pixeladdr & 0x1FF] == 0) continue; } interpX.SetX(x); s32 z = interpX.InterpolateZ(zl, zr, polygon->WBuffer); if (polygon->IsShadowMask) { // for shadow masks: set stencil bits where the depth test fails. // draw nothing. // checkme if (polyalpha == 31) { if (!wireframe) { if ((edge & 0x1) && !l_filledge) continue; if ((edge & 0x2) && !r_filledge) continue; } } if (!fnDepthTest(DepthBuffer[pixeladdr], z)) StencilBuffer[pixeladdr & 0x1FF] = 1; continue; } if (!fnDepthTest(DepthBuffer[pixeladdr], z)) continue; u32 vr = interpX.Interpolate(rl, rr); u32 vg = interpX.Interpolate(gl, gr); u32 vb = interpX.Interpolate(bl, br); s16 s = interpX.Interpolate(sl, sr); s16 t = interpX.Interpolate(tl, tr); u32 color = RenderPixel(polygon, vr>>3, vg>>3, vb>>3, s, t); u8 alpha = color >> 24; // alpha test // TODO: check alpha test when blending is disabled if (alpha <= RenderAlphaRef) continue; if (alpha == 31) { // edge fill rules for opaque pixels // TODO, eventually: antialiasing if (!wireframe) { if ((edge & 0x1) && !l_filledge) continue; if ((edge & 0x2) && !r_filledge) continue; } DepthBuffer[pixeladdr] = z; } else { u32 dstattr = AttrBuffer[pixeladdr]; attr |= (1<<30); if (polygon->IsShadow) dstattr |= (1<<30); // skip if polygon IDs are equal // note: this only happens if the destination pixel was translucent // or always when drawing a shadow // (the GPU keeps track of which pixels are translucent, regardless of // the destination alpha) if ((dstattr & 0x7F000000) == (attr & 0x7F000000)) continue; u32 dstcolor = ColorBuffer[pixeladdr]; u32 dstalpha = dstcolor >> 24; if ((dstalpha > 0) && (RenderDispCnt & (1<<3))) { u32 srcR = color & 0x3F; u32 srcG = (color >> 8) & 0x3F; u32 srcB = (color >> 16) & 0x3F; u32 dstR = dstcolor & 0x3F; u32 dstG = (dstcolor >> 8) & 0x3F; u32 dstB = (dstcolor >> 16) & 0x3F; alpha++; dstR = ((srcR * alpha) + (dstR * (32-alpha))) >> 5; dstG = ((srcG * alpha) + (dstG * (32-alpha))) >> 5; dstB = ((srcB * alpha) + (dstB * (32-alpha))) >> 5; alpha--; if (alpha > dstalpha) dstalpha = alpha; color = dstR | (dstG << 8) | (dstB << 16) | (dstalpha << 24); } if (polygon->Attr & (1<<11)) DepthBuffer[pixeladdr] = z; } ColorBuffer[pixeladdr] = color; AttrBuffer[pixeladdr] = attr; } rp->XL = rp->SlopeL.Step(); rp->XR = rp->SlopeR.Step(); } #if 0 void RenderPolygon(RendererPolygon* rp) { Polygon* polygon = rp->PolyData; int nverts = polygon->NumVertices; bool isline = false; int vtop = polygon->VTop, vbot = polygon->VBottom; s32 ytop = polygon->YTop, ybot = polygon->YBottom; s32 xtop = polygon->XTop, xbot = polygon->XBottom; if (ytop > 191) return; // draw, line per line if (ybot > 192) ybot = 192; /*if (polygon->ClearStencil) { memset(StencilBuffer, 0, 192*256); }*/ for (s32 y = ytop; y < ybot; y++) { RenderPolygonScanline(rp, y); } } #endif void RenderScanline(s32 y, int npolys) { for (int i = 0; i < npolys; i++) { RendererPolygon* rp = &PolygonList[i]; Polygon* polygon = rp->PolyData; if (y >= polygon->YTop && (y < polygon->YBottom || (y == polygon->YTop && polygon->YBottom == polygon->YTop))) RenderPolygonScanline(rp, y); } } void ClearBuffers() { u32 polyid = RenderClearAttr1 & 0x3F000000; if (RenderDispCnt & (1<<14)) { u8 xoff = (RenderClearAttr2 >> 16) & 0xFF; u8 yoff = (RenderClearAttr2 >> 24) & 0xFF; for (int y = 0; y < 256*192; y += 256) { for (int x = 0; x < 256; x++) { u16 val2 = GPU::ReadVRAM_Texture(0x40000 + (yoff << 9) + (xoff << 1)); u16 val3 = GPU::ReadVRAM_Texture(0x60000 + (yoff << 9) + (xoff << 1)); // TODO: confirm color conversion u32 r = (val2 << 1) & 0x3E; if (r) r++; u32 g = (val2 >> 4) & 0x3E; if (g) g++; u32 b = (val2 >> 9) & 0x3E; if (b) b++; u32 a = (val2 & 0x8000) ? 0x1F000000 : 0; u32 color = r | (g << 8) | (b << 16) | a; u32 z = ((val3 & 0x7FFF) * 0x200) + 0x1FF; ColorBuffer[y+x] = color; DepthBuffer[y+x] = z; AttrBuffer[y+x] = polyid | (val3 & 0x8000); xoff++; } yoff++; } } else { // TODO: confirm color conversion u32 r = (RenderClearAttr1 << 1) & 0x3E; if (r) r++; u32 g = (RenderClearAttr1 >> 4) & 0x3E; if (g) g++; u32 b = (RenderClearAttr1 >> 9) & 0x3E; if (b) b++; u32 a = (RenderClearAttr1 >> 16) & 0x1F; u32 color = r | (g << 8) | (b << 16) | (a << 24); u32 z = ((RenderClearAttr2 & 0x7FFF) * 0x200) + 0x1FF; polyid |= (RenderClearAttr1 & 0x8000); for (int i = 0; i < 256*192; i++) { ColorBuffer[i] = color; DepthBuffer[i] = z; AttrBuffer[i] = polyid; } } } int derp=0;int linebuf=0; void RenderPolygons(bool threaded, Polygon* polygons, int npolys) { // sort polygons // TODO: Y-sorting for translucent polygons // TODO: all sorting should be done in GPU3D.cpp int j = 0; for (int i = 0; i < npolys; i++) { if (polygons[i].Translucent) continue; SetupPolygon(&PolygonList[j++], &polygons[i]); } for (int i = 0; i < npolys; i++) { if (!polygons[i].Translucent) continue; SetupPolygon(&PolygonList[j++], &polygons[i]); } for (s32 y = 0; y < 192; y++) { RenderScanline(y, npolys); if (threaded) Platform::Semaphore_Post(Sema_ScanlineCount);derp=y;linebuf++; } } void VCount144() { Platform::Semaphore_Wait(Sema_RenderDone); } void RenderFrame(Vertex* vertices, Polygon* polygons, int npolys) { //ClearBuffers(); //RenderPolygons(false, polygons, npolys); //Platform::Semaphore_Wait(Sema_ScanlineCount); //Platform::Semaphore_Wait(Sema_RenderDone); if (linebuf!=0) printf("last frame was bad! %d\n", linebuf); Platform::Semaphore_Post(Sema_RenderStart); //printf("start frame %d\n", derp); } void RenderThreadFunc() { //Platform::Semaphore_Post(Sema_ScanlineCount); for (;;) { Platform::Semaphore_Wait(Sema_RenderStart); if (!RenderThreadRunning) return; ClearBuffers(); RenderPolygons(true, RenderPolygonRAM, RenderNumPolygons); //Platform::Semaphore_Post(Sema_ScanlineCount); Platform::Semaphore_Post(Sema_RenderDone); } } void RequestLine(int line) { Platform::Semaphore_Wait(Sema_ScanlineCount); linebuf--; } u32* GetLine(int line) { //Platform::Semaphore_Wait(Sema_ScanlineCount); if (line > derp || linebuf<0) printf("bad! %d %d, %d\n", line, derp, linebuf); return &ColorBuffer[line * 256]; } } }