melonDS/src/NDSCart.cpp
2024-06-15 17:01:19 +02:00

2031 lines
57 KiB
C++

/*
Copyright 2016-2024 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <string.h>
#include "NDS.h"
#include "DSi.h"
#include "NDSCart.h"
#include "CRC32.h"
#include "Platform.h"
#include "ROMList.h"
#include "melonDLDI.h"
#include "FATStorage.h"
#include "Utils.h"
namespace melonDS
{
using Platform::Log;
using Platform::LogLevel;
namespace NDSCart
{
enum
{
ROMTransfer_PrepareData = 0,
ROMTransfer_End
};
// SRAM TODO: emulate write delays???
constexpr u32 ByteSwap(u32 val)
{
return (val >> 24) | ((val >> 8) & 0xFF00) | ((val << 8) & 0xFF0000) | (val << 24);
}
void NDSCartSlot::Key1_Encrypt(u32* data) const noexcept
{
u32 y = data[0];
u32 x = data[1];
u32 z;
for (u32 i = 0x0; i <= 0xF; i++)
{
z = Key1_KeyBuf[i] ^ x;
x = Key1_KeyBuf[0x012 + (z >> 24) ];
x += Key1_KeyBuf[0x112 + ((z >> 16) & 0xFF)];
x ^= Key1_KeyBuf[0x212 + ((z >> 8) & 0xFF)];
x += Key1_KeyBuf[0x312 + (z & 0xFF)];
x ^= y;
y = z;
}
data[0] = x ^ Key1_KeyBuf[0x10];
data[1] = y ^ Key1_KeyBuf[0x11];
}
void NDSCartSlot::Key1_Decrypt(u32* data) const noexcept
{
u32 y = data[0];
u32 x = data[1];
u32 z;
for (u32 i = 0x11; i >= 0x2; i--)
{
z = Key1_KeyBuf[i] ^ x;
x = Key1_KeyBuf[0x012 + (z >> 24) ];
x += Key1_KeyBuf[0x112 + ((z >> 16) & 0xFF)];
x ^= Key1_KeyBuf[0x212 + ((z >> 8) & 0xFF)];
x += Key1_KeyBuf[0x312 + (z & 0xFF)];
x ^= y;
y = z;
}
data[0] = x ^ Key1_KeyBuf[0x1];
data[1] = y ^ Key1_KeyBuf[0x0];
}
void NDSCartSlot::Key1_ApplyKeycode(u32* keycode, u32 mod) noexcept
{
Key1_Encrypt(&keycode[1]);
Key1_Encrypt(&keycode[0]);
u32 temp[2] = {0,0};
for (u32 i = 0; i <= 0x11; i++)
{
Key1_KeyBuf[i] ^= ByteSwap(keycode[i % mod]);
}
for (u32 i = 0; i <= 0x410; i+=2)
{
Key1_Encrypt(temp);
Key1_KeyBuf[i ] = temp[1];
Key1_KeyBuf[i+1] = temp[0];
}
}
void NDSCartSlot::Key1_LoadKeyBuf(bool dsi, const u8 *bios, u32 biosLength) noexcept
{
if (NDS.IsLoadedARM7BIOSKnownNative())
{
u32 expected_bios_length = dsi ? 0x10000 : 0x4000;
if (biosLength != expected_bios_length)
{
Platform::Log(LogLevel::Error, "NDSCart: Expected an ARM7 BIOS of %u bytes, got %u bytes\n", expected_bios_length, biosLength);
}
else if (bios == nullptr)
{
Platform::Log(LogLevel::Error, "NDSCart: Expected an ARM7 BIOS of %u bytes, got nullptr\n", expected_bios_length);
}
else
{
memcpy(Key1_KeyBuf.data(), bios + (dsi ? 0xC6D0 : 0x0030), sizeof(Key1_KeyBuf));
Platform::Log(LogLevel::Debug, "NDSCart: Initialized Key1_KeyBuf from memory\n");
}
}
else
{
// well
memset(Key1_KeyBuf.data(), 0, sizeof(Key1_KeyBuf));
Platform::Log(LogLevel::Debug, "NDSCart: Initialized Key1_KeyBuf to zero\n");
}
}
void NDSCartSlot::Key1_InitKeycode(bool dsi, u32 idcode, u32 level, u32 mod, const u8 *bios, u32 biosLength) noexcept
{
Key1_LoadKeyBuf(dsi, bios, biosLength);
u32 keycode[3] = {idcode, idcode>>1, idcode<<1};
if (level >= 1) Key1_ApplyKeycode(keycode, mod);
if (level >= 2) Key1_ApplyKeycode(keycode, mod);
if (level >= 3)
{
keycode[1] <<= 1;
keycode[2] >>= 1;
Key1_ApplyKeycode(keycode, mod);
}
}
void NDSCartSlot::Key2_Encrypt(const u8* data, u32 len) noexcept
{
for (u32 i = 0; i < len; i++)
{
Key2_X = (((Key2_X >> 5) ^
(Key2_X >> 17) ^
(Key2_X >> 18) ^
(Key2_X >> 31)) & 0xFF)
+ (Key2_X << 8);
Key2_Y = (((Key2_Y >> 5) ^
(Key2_Y >> 23) ^
(Key2_Y >> 18) ^
(Key2_Y >> 31)) & 0xFF)
+ (Key2_Y << 8);
Key2_X &= 0x0000007FFFFFFFFFULL;
Key2_Y &= 0x0000007FFFFFFFFFULL;
}
}
CartCommon::CartCommon(const u8* rom, u32 len, u32 chipid, bool badDSiDump, ROMListEntry romparams, melonDS::NDSCart::CartType type, void* userdata) :
CartCommon(CopyToUnique(rom, len), len, chipid, badDSiDump, romparams, type, userdata)
{
}
CartCommon::CartCommon(std::unique_ptr<u8[]>&& rom, u32 len, u32 chipid, bool badDSiDump, ROMListEntry romparams, melonDS::NDSCart::CartType type, void* userdata) :
ROM(std::move(rom)),
ROMLength(len),
ChipID(chipid),
ROMParams(romparams),
CartType(type),
UserData(userdata)
{
memcpy(&Header, ROM.get(), sizeof(Header));
IsDSi = Header.IsDSi() && !badDSiDump;
DSiBase = Header.DSiRegionStart << 19;
}
CartCommon::~CartCommon() = default;
u32 CartCommon::Checksum() const
{
const NDSHeader& header = GetHeader();
u32 crc = CRC32(ROM.get(), 0x40);
crc = CRC32(&ROM[header.ARM9ROMOffset], header.ARM9Size, crc);
crc = CRC32(&ROM[header.ARM7ROMOffset], header.ARM7Size, crc);
if (IsDSi)
{
crc = CRC32(&ROM[header.DSiARM9iROMOffset], header.DSiARM9iSize, crc);
crc = CRC32(&ROM[header.DSiARM7iROMOffset], header.DSiARM7iSize, crc);
}
return crc;
}
void CartCommon::Reset()
{
CmdEncMode = 0;
DataEncMode = 0;
DSiMode = false;
}
void CartCommon::SetupDirectBoot(const std::string& romname, NDS& nds)
{
CmdEncMode = 2;
DataEncMode = 2;
DSiMode = IsDSi && (nds.ConsoleType==1);
}
void CartCommon::DoSavestate(Savestate* file)
{
file->Section("NDCS");
file->Var32(&CmdEncMode);
file->Var32(&DataEncMode);
file->Bool32(&DSiMode);
}
int CartCommon::ROMCommandStart(NDS& nds, NDSCartSlot& cartslot, const u8* cmd, u8* data, u32 len)
{
if (CmdEncMode == 0)
{
switch (cmd[0])
{
case 0x9F:
memset(data, 0xFF, len);
return 0;
case 0x00:
memset(data, 0, len);
if (len > 0x1000)
{
ReadROM(0, 0x1000, data, 0);
for (u32 pos = 0x1000; pos < len; pos += 0x1000)
memcpy(data+pos, data, 0x1000);
}
else
ReadROM(0, len, data, 0);
return 0;
case 0x90:
for (u32 pos = 0; pos < len; pos += 4)
*(u32*)&data[pos] = ChipID;
return 0;
case 0x3C:
CmdEncMode = 1;
cartslot.Key1_InitKeycode(false, *(u32*)&ROM[0xC], 2, 2, nds.GetARM7BIOS().data(), ARM7BIOSSize);
DSiMode = false;
return 0;
case 0x3D:
if (IsDSi)
{
auto& dsi = static_cast<DSi&>(nds);
CmdEncMode = 1;
cartslot.Key1_InitKeycode(true, *(u32*)&ROM[0xC], 1, 2, &dsi.ARM7iBIOS[0], sizeof(DSi::ARM7iBIOS));
DSiMode = true;
}
return 0;
default:
return 0;
}
}
else if (CmdEncMode == 1)
{
// decrypt the KEY1 command as needed
// (KEY2 commands do not need decrypted because KEY2 is handled entirely by hardware,
// but KEY1 is not, so DS software is responsible for encrypting KEY1 commands)
u8 cmddec[8];
*(u32*)&cmddec[0] = ByteSwap(*(u32*)&cmd[4]);
*(u32*)&cmddec[4] = ByteSwap(*(u32*)&cmd[0]);
cartslot.Key1_Decrypt((u32*)cmddec);
u32 tmp = ByteSwap(*(u32*)&cmddec[4]);
*(u32*)&cmddec[4] = ByteSwap(*(u32*)&cmddec[0]);
*(u32*)&cmddec[0] = tmp;
// TODO eventually: verify all the command parameters and shit
switch (cmddec[0] & 0xF0)
{
case 0x40:
DataEncMode = 2;
return 0;
case 0x10:
for (u32 pos = 0; pos < len; pos += 4)
*(u32*)&data[pos] = ChipID;
return 0;
case 0x20:
{
u32 addr = (cmddec[2] & 0xF0) << 8;
if (DSiMode)
{
// the DSi region starts with 0x3000 unreadable bytes
// similarly to how the DS region starts at 0x1000 with 0x3000 unreadable bytes
// these contain data for KEY1 crypto
addr -= 0x1000;
addr += DSiBase;
}
ReadROM(addr, 0x1000, data, 0);
}
return 0;
case 0xA0:
CmdEncMode = 2;
return 0;
default:
return 0;
}
}
else if (CmdEncMode == 2)
{
switch (cmd[0])
{
case 0xB8:
for (u32 pos = 0; pos < len; pos += 4)
*(u32*)&data[pos] = ChipID;
return 0;
default:
return 0;
}
}
return 0;
}
void CartCommon::ROMCommandFinish(const u8* cmd, u8* data, u32 len)
{
}
u8 CartCommon::SPIWrite(u8 val, u32 pos, bool last)
{
return 0xFF;
}
void CartCommon::ReadROM(u32 addr, u32 len, u8* data, u32 offset) const
{
if (addr >= ROMLength) return;
if ((addr+len) > ROMLength)
len = ROMLength - addr;
memcpy(data+offset, ROM.get()+addr, len);
}
const NDSBanner* CartCommon::Banner() const
{
const NDSHeader& header = GetHeader();
size_t bannersize = header.IsDSi() ? 0x23C0 : 0xA40;
if (header.BannerOffset >= 0x200 && header.BannerOffset < (ROMLength - bannersize))
{
return reinterpret_cast<const NDSBanner*>(ROM.get() + header.BannerOffset);
}
return nullptr;
}
CartRetail::CartRetail(const u8* rom, u32 len, u32 chipid, bool badDSiDump, ROMListEntry romparams, std::unique_ptr<u8[]>&& sram, u32 sramlen, void* userdata, melonDS::NDSCart::CartType type) :
CartRetail(CopyToUnique(rom, len), len, chipid, badDSiDump, romparams, std::move(sram), sramlen, userdata, type)
{
}
CartRetail::CartRetail(std::unique_ptr<u8[]>&& rom, u32 len, u32 chipid, bool badDSiDump, ROMListEntry romparams, std::unique_ptr<u8[]>&& sram, u32 sramlen, void* userdata, melonDS::NDSCart::CartType type) :
CartCommon(std::move(rom), len, chipid, badDSiDump, romparams, type, userdata)
{
u32 savememtype = ROMParams.SaveMemType <= 10 ? ROMParams.SaveMemType : 0;
constexpr int sramlengths[] =
{
0,
512,
8192, 65536, 128*1024,
256*1024, 512*1024, 1024*1024,
8192*1024, 16384*1024, 65536*1024
};
SRAMLength = sramlengths[savememtype];
if (SRAMLength)
{ // If this cart should have any save data...
if (sram && sramlen == SRAMLength)
{ // If we were given save data that already has the correct length...
SRAM = std::move(sram);
}
else
{ // Copy in what we can, truncate the rest.
SRAM = std::make_unique<u8[]>(SRAMLength);
memset(SRAM.get(), 0xFF, SRAMLength);
if (sram)
{ // If we have anything to copy, that is.
memcpy(SRAM.get(), sram.get(), std::min(sramlen, SRAMLength));
}
}
}
switch (savememtype)
{
case 1: SRAMType = 1; break; // EEPROM, small
case 2:
case 3:
case 4: SRAMType = 2; break; // EEPROM, regular
case 5:
case 6:
case 7: SRAMType = 3; break; // FLASH
case 8:
case 9:
case 10: SRAMType = 4; break; // NAND
default: SRAMType = 0; break; // ...whatever else
}
}
CartRetail::~CartRetail() = default;
// std::unique_ptr cleans up the SRAM and ROM
void CartRetail::Reset()
{
CartCommon::Reset();
SRAMCmd = 0;
SRAMAddr = 0;
SRAMStatus = 0;
}
void CartRetail::DoSavestate(Savestate* file)
{
CartCommon::DoSavestate(file);
// we reload the SRAM contents.
// it should be the same file, but the contents may change
u32 oldlen = SRAMLength;
file->Var32(&SRAMLength);
if (SRAMLength != oldlen)
{
Log(LogLevel::Warn, "savestate: VERY BAD!!!! SRAM LENGTH DIFFERENT. %d -> %d\n", oldlen, SRAMLength);
Log(LogLevel::Warn, "oh well. loading it anyway. adsfgdsf\n");
SRAM = SRAMLength ? std::make_unique<u8[]>(SRAMLength) : nullptr;
}
if (SRAMLength)
{
file->VarArray(SRAM.get(), SRAMLength);
}
// SPI status shito
file->Var8(&SRAMCmd);
file->Var32(&SRAMAddr);
file->Var8(&SRAMStatus);
if ((!file->Saving) && SRAM)
Platform::WriteNDSSave(SRAM.get(), SRAMLength, 0, SRAMLength, UserData);
}
void CartRetail::SetSaveMemory(const u8* savedata, u32 savelen)
{
if (!SRAM) return;
u32 len = std::min(savelen, SRAMLength);
memcpy(SRAM.get(), savedata, len);
Platform::WriteNDSSave(savedata, len, 0, len, UserData);
}
int CartRetail::ROMCommandStart(NDS& nds, NDSCart::NDSCartSlot& cartslot, const u8* cmd, u8* data, u32 len)
{
if (CmdEncMode != 2) return CartCommon::ROMCommandStart(nds, cartslot, cmd, data, len);
switch (cmd[0])
{
case 0xB7:
{
u32 addr = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
memset(data, 0, len);
if (((addr + len - 1) >> 12) != (addr >> 12))
{
u32 len1 = 0x1000 - (addr & 0xFFF);
ReadROM_B7(addr, len1, data, 0);
ReadROM_B7(addr+len1, len-len1, data, len1);
}
else
ReadROM_B7(addr, len, data, 0);
}
return 0;
default:
return CartCommon::ROMCommandStart(nds, cartslot, cmd, data, len);
}
}
u8 CartRetail::SPIWrite(u8 val, u32 pos, bool last)
{
if (SRAMType == 0) return 0;
if (pos == 0)
{
// handle generic commands with no parameters
switch (val)
{
case 0x04: // write disable
SRAMStatus &= ~(1<<1);
return 0;
case 0x06: // write enable
SRAMStatus |= (1<<1);
return 0;
default:
SRAMCmd = val;
SRAMAddr = 0;
}
return 0xFF;
}
switch (SRAMType)
{
case 1: return SRAMWrite_EEPROMTiny(val, pos, last);
case 2: return SRAMWrite_EEPROM(val, pos, last);
case 3: return SRAMWrite_FLASH(val, pos, last);
default: return 0xFF;
}
}
void CartRetail::ReadROM_B7(u32 addr, u32 len, u8* data, u32 offset) const
{
addr &= (ROMLength-1);
if (addr < 0x8000)
addr = 0x8000 + (addr & 0x1FF);
if (IsDSi && (addr >= DSiBase))
{
// for DSi carts:
// * in DSi mode: block the first 0x3000 bytes of the DSi area
// * in DS mode: block the entire DSi area
if ((!DSiMode) || (addr < (DSiBase+0x3000)))
addr = 0x8000 + (addr & 0x1FF);
}
memcpy(data+offset, ROM.get()+addr, len);
}
u8 CartRetail::SRAMWrite_EEPROMTiny(u8 val, u32 pos, bool last)
{
switch (SRAMCmd)
{
case 0x01: // write status register
// TODO: WP bits should be nonvolatile!
if (pos == 1)
SRAMStatus = (SRAMStatus & 0x01) | (val & 0x0C);
return 0;
case 0x05: // read status register
return SRAMStatus | 0xF0;
case 0x02: // write low
case 0x0A: // write high
if (pos < 2)
{
SRAMAddr = val;
SRAMFirstAddr = SRAMAddr;
}
else
{
// TODO: implement WP bits!
if (SRAMStatus & (1<<1))
{
SRAM[(SRAMAddr + ((SRAMCmd==0x0A)?0x100:0)) & 0x1FF] = val;
}
SRAMAddr++;
}
if (last)
{
SRAMStatus &= ~(1<<1);
Platform::WriteNDSSave(SRAM.get(), SRAMLength,
(SRAMFirstAddr + ((SRAMCmd==0x0A)?0x100:0)) & 0x1FF, SRAMAddr-SRAMFirstAddr,
UserData);
}
return 0;
case 0x03: // read low
case 0x0B: // read high
if (pos < 2)
{
SRAMAddr = val;
return 0;
}
else
{
u8 ret = SRAM[(SRAMAddr + ((SRAMCmd==0x0B)?0x100:0)) & 0x1FF];
SRAMAddr++;
return ret;
}
case 0x9F: // read JEDEC ID
return 0xFF;
default:
if (pos == 1)
Log(LogLevel::Warn, "unknown tiny EEPROM save command %02X\n", SRAMCmd);
return 0xFF;
}
}
u8 CartRetail::SRAMWrite_EEPROM(u8 val, u32 pos, bool last)
{
u32 addrsize = 2;
if (SRAMLength > 65536) addrsize++;
switch (SRAMCmd)
{
case 0x01: // write status register
// TODO: WP bits should be nonvolatile!
if (pos == 1)
SRAMStatus = (SRAMStatus & 0x01) | (val & 0x0C);
return 0;
case 0x05: // read status register
return SRAMStatus;
case 0x02: // write
if (pos <= addrsize)
{
SRAMAddr <<= 8;
SRAMAddr |= val;
SRAMFirstAddr = SRAMAddr;
}
else
{
// TODO: implement WP bits
if (SRAMStatus & (1<<1))
{
SRAM[SRAMAddr & (SRAMLength-1)] = val;
}
SRAMAddr++;
}
if (last)
{
SRAMStatus &= ~(1<<1);
Platform::WriteNDSSave(SRAM.get(), SRAMLength,
SRAMFirstAddr & (SRAMLength-1), SRAMAddr-SRAMFirstAddr,
UserData);
}
return 0;
case 0x03: // read
if (pos <= addrsize)
{
SRAMAddr <<= 8;
SRAMAddr |= val;
return 0;
}
else
{
// TODO: size limit!!
u8 ret = SRAM[SRAMAddr & (SRAMLength-1)];
SRAMAddr++;
return ret;
}
case 0x9F: // read JEDEC ID
// TODO: GBAtek implies it's not always all FF (FRAM)
return 0xFF;
default:
if (pos == 1)
Log(LogLevel::Warn, "unknown EEPROM save command %02X\n", SRAMCmd);
return 0xFF;
}
}
u8 CartRetail::SRAMWrite_FLASH(u8 val, u32 pos, bool last)
{
switch (SRAMCmd)
{
case 0x05: // read status register
return SRAMStatus;
case 0x02: // page program
if (pos <= 3)
{
SRAMAddr <<= 8;
SRAMAddr |= val;
SRAMFirstAddr = SRAMAddr;
}
else
{
if (SRAMStatus & (1<<1))
{
// CHECKME: should it be &=~val ??
SRAM[SRAMAddr & (SRAMLength-1)] = 0;
}
SRAMAddr++;
}
if (last)
{
SRAMStatus &= ~(1<<1);
Platform::WriteNDSSave(SRAM.get(), SRAMLength,
SRAMFirstAddr & (SRAMLength-1), SRAMAddr-SRAMFirstAddr,
UserData);
}
return 0;
case 0x03: // read
if (pos <= 3)
{
SRAMAddr <<= 8;
SRAMAddr |= val;
return 0;
}
else
{
u8 ret = SRAM[SRAMAddr & (SRAMLength-1)];
SRAMAddr++;
return ret;
}
case 0x0A: // page write
if (pos <= 3)
{
SRAMAddr <<= 8;
SRAMAddr |= val;
SRAMFirstAddr = SRAMAddr;
}
else
{
if (SRAMStatus & (1<<1))
{
SRAM[SRAMAddr & (SRAMLength-1)] = val;
}
SRAMAddr++;
}
if (last)
{
SRAMStatus &= ~(1<<1);
Platform::WriteNDSSave(SRAM.get(), SRAMLength,
SRAMFirstAddr & (SRAMLength-1), SRAMAddr-SRAMFirstAddr,
UserData);
}
return 0;
case 0x0B: // fast read
if (pos <= 3)
{
SRAMAddr <<= 8;
SRAMAddr |= val;
return 0;
}
else if (pos == 4)
{
// dummy byte
return 0;
}
else
{
u8 ret = SRAM[SRAMAddr & (SRAMLength-1)];
SRAMAddr++;
return ret;
}
case 0x9F: // read JEDEC IC
// GBAtek says it should be 0xFF. verify?
return 0xFF;
case 0xD8: // sector erase
if (pos <= 3)
{
SRAMAddr <<= 8;
SRAMAddr |= val;
SRAMFirstAddr = SRAMAddr;
}
if ((pos == 3) && (SRAMStatus & (1<<1)))
{
for (u32 i = 0; i < 0x10000; i++)
{
SRAM[SRAMAddr & (SRAMLength-1)] = 0;
SRAMAddr++;
}
}
if (last)
{
SRAMStatus &= ~(1<<1);
Platform::WriteNDSSave(SRAM.get(), SRAMLength,
SRAMFirstAddr & (SRAMLength-1), SRAMAddr-SRAMFirstAddr,
UserData);
}
return 0;
case 0xDB: // page erase
if (pos <= 3)
{
SRAMAddr <<= 8;
SRAMAddr |= val;
SRAMFirstAddr = SRAMAddr;
}
if ((pos == 3) && (SRAMStatus & (1<<1)))
{
for (u32 i = 0; i < 0x100; i++)
{
SRAM[SRAMAddr & (SRAMLength-1)] = 0;
SRAMAddr++;
}
}
if (last)
{
SRAMStatus &= ~(1<<1);
Platform::WriteNDSSave(SRAM.get(), SRAMLength,
SRAMFirstAddr & (SRAMLength-1), SRAMAddr-SRAMFirstAddr,
UserData);
}
return 0;
default:
if (pos == 1)
Log(LogLevel::Warn, "unknown FLASH save command %02X\n", SRAMCmd);
return 0xFF;
}
}
CartRetailNAND::CartRetailNAND(const u8* rom, u32 len, u32 chipid, ROMListEntry romparams, std::unique_ptr<u8[]>&& sram, u32 sramlen, void* userdata) :
CartRetailNAND(CopyToUnique(rom, len), len, chipid, romparams, std::move(sram), sramlen, userdata)
{
}
CartRetailNAND::CartRetailNAND(std::unique_ptr<u8[]>&& rom, u32 len, u32 chipid, ROMListEntry romparams, std::unique_ptr<u8[]>&& sram, u32 sramlen, void* userdata) :
CartRetail(std::move(rom), len, chipid, false, romparams, std::move(sram), sramlen, userdata, CartType::RetailNAND)
{
BuildSRAMID();
}
CartRetailNAND::~CartRetailNAND() = default;
void CartRetailNAND::Reset()
{
CartRetail::Reset();
SRAMAddr = 0;
SRAMStatus = 0x20;
SRAMWindow = 0;
// ROM header 94/96 = SRAM addr start / 0x20000
SRAMBase = *(u16*)&ROM[0x96] << 17;
memset(SRAMWriteBuffer, 0, 0x800);
}
void CartRetailNAND::DoSavestate(Savestate* file)
{
CartRetail::DoSavestate(file);
file->Var32(&SRAMBase);
file->Var32(&SRAMWindow);
file->VarArray(SRAMWriteBuffer, 0x800);
file->Var32(&SRAMWritePos);
if (!file->Saving)
BuildSRAMID();
}
void CartRetailNAND::SetSaveMemory(const u8* savedata, u32 savelen)
{
CartRetail::SetSaveMemory(savedata, savelen);
BuildSRAMID();
}
int CartRetailNAND::ROMCommandStart(NDS& nds, NDSCart::NDSCartSlot& cartslot, const u8* cmd, u8* data, u32 len)
{
if (CmdEncMode != 2) return CartCommon::ROMCommandStart(nds, cartslot, cmd, data, len);
switch (cmd[0])
{
case 0x81: // write data
if ((SRAMStatus & (1<<4)) && SRAMWindow >= SRAMBase && SRAMWindow < (SRAMBase+SRAMLength))
{
u32 addr = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
if (addr >= SRAMWindow && addr < (SRAMWindow+0x20000))
{
// the command is issued 4 times, each with the same address
// seems they use the one from the first command (CHECKME)
if (!SRAMAddr)
SRAMAddr = addr;
}
}
else
SRAMAddr = 0;
return 1;
case 0x82: // commit write
if (SRAMAddr && SRAMWritePos)
{
if (SRAMLength && SRAMAddr < (SRAMBase+SRAMLength-0x20000))
{
memcpy(&SRAM[SRAMAddr - SRAMBase], SRAMWriteBuffer, 0x800);
Platform::WriteNDSSave(SRAM.get(), SRAMLength, SRAMAddr - SRAMBase, 0x800, UserData);
}
SRAMAddr = 0;
SRAMWritePos = 0;
}
SRAMStatus &= ~(1<<4);
return 0;
case 0x84: // discard write buffer
SRAMAddr = 0;
SRAMWritePos = 0;
return 0;
case 0x85: // write enable
if (SRAMWindow)
{
SRAMStatus |= (1<<4);
SRAMWritePos = 0;
}
return 0;
case 0x8B: // revert to ROM read mode
SRAMWindow = 0;
return 0;
case 0x94: // return ID data
{
// TODO: check what the data really is. probably the NAND chip's ID.
// also, might be different between different games or even between different carts.
// this was taken from a Jam with the Band cart.
u8 iddata[0x30] =
{
0xEC, 0xF1, 0x00, 0x95, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
if (SRAMLength) memcpy(&iddata[0x18], &SRAM[SRAMLength - 0x800], 16);
memset(data, 0, len);
memcpy(data, iddata, std::min(len, 0x30u));
}
return 0;
case 0xB2: // set window for accessing SRAM
{
u32 addr = (cmd[1]<<24) | ((cmd[2]&0xFE)<<16);
// window is 0x20000 bytes, address is aligned to that boundary
// NAND remains stuck 'busy' forever if this is less than the starting SRAM address
// TODO.
if (addr < SRAMBase) Log(LogLevel::Warn,"NAND: !! BAD ADDR %08X < %08X\n", addr, SRAMBase);
if (addr >= (SRAMBase+SRAMLength)) Log(LogLevel::Warn,"NAND: !! BAD ADDR %08X > %08X\n", addr, SRAMBase+SRAMLength);
SRAMWindow = addr;
}
return 0;
case 0xB7:
{
u32 addr = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
if (SRAMWindow == 0)
{
// regular ROM mode
memset(data, 0, len);
if (((addr + len - 1) >> 12) != (addr >> 12))
{
u32 len1 = 0x1000 - (addr & 0xFFF);
ReadROM_B7(addr, len1, data, 0);
ReadROM_B7(addr+len1, len-len1, data, len1);
}
else
ReadROM_B7(addr, len, data, 0);
}
else
{
// SRAM mode
memset(data, 0xFF, len);
if (SRAMWindow >= SRAMBase && SRAMWindow < (SRAMBase+SRAMLength) &&
addr >= SRAMWindow && addr < (SRAMWindow+0x20000))
{
memcpy(data, &SRAM[addr - SRAMBase], len);
}
}
}
return 0;
case 0xD6: // read NAND status
{
// status bits
// bit5: ready
// bit4: write enable
for (u32 i = 0; i < len; i+=4)
*(u32*)&data[i] = SRAMStatus * 0x01010101;
}
return 0;
default:
return CartRetail::ROMCommandStart(nds, cartslot, cmd, data, len);
}
}
void CartRetailNAND::ROMCommandFinish(const u8* cmd, u8* data, u32 len)
{
if (CmdEncMode != 2) return CartCommon::ROMCommandFinish(cmd, data, len);
switch (cmd[0])
{
case 0x81: // write data
if (SRAMAddr)
{
if ((SRAMWritePos + len) > 0x800)
len = 0x800 - SRAMWritePos;
memcpy(&SRAMWriteBuffer[SRAMWritePos], data, len);
SRAMWritePos += len;
}
return;
default:
return CartCommon::ROMCommandFinish(cmd, data, len);
}
}
u8 CartRetailNAND::SPIWrite(u8 val, u32 pos, bool last)
{
return 0xFF;
}
void CartRetailNAND::BuildSRAMID()
{
// the last 128K of the SRAM are read-only.
// most of it is FF, except for the NAND ID at the beginning
// of the last 0x800 bytes.
if (SRAMLength > 0x20000)
{
memset(&SRAM[SRAMLength - 0x20000], 0xFF, 0x20000);
// TODO: check what the data is all about!
// this was pulled from a Jam with the Band cart. may be different on other carts.
// WarioWare DIY may have different data or not have this at all.
// the ID data is also found in the response to command 94, and JwtB checks it.
// WarioWare doesn't seem to care.
// there is also more data here, but JwtB doesn't seem to care.
u8 iddata[0x10] = {0xEC, 0x00, 0x9E, 0xA1, 0x51, 0x65, 0x34, 0x35, 0x30, 0x35, 0x30, 0x31, 0x19, 0x19, 0x02, 0x0A};
memcpy(&SRAM[SRAMLength - 0x800], iddata, 16);
}
}
CartRetailIR::CartRetailIR(const u8* rom, u32 len, u32 chipid, u32 irversion, bool badDSiDump, ROMListEntry romparams, std::unique_ptr<u8[]>&& sram, u32 sramlen, void* userdata) :
CartRetailIR(CopyToUnique(rom, len), len, chipid, irversion, badDSiDump, romparams, std::move(sram), sramlen, userdata)
{
}
CartRetailIR::CartRetailIR(
std::unique_ptr<u8[]>&& rom,
u32 len,
u32 chipid,
u32 irversion,
bool badDSiDump,
ROMListEntry romparams,
std::unique_ptr<u8[]>&& sram,
u32 sramlen,
void* userdata
) :
CartRetail(std::move(rom), len, chipid, badDSiDump, romparams, std::move(sram), sramlen, userdata, CartType::RetailIR),
IRVersion(irversion)
{
}
CartRetailIR::~CartRetailIR() = default;
void CartRetailIR::Reset()
{
CartRetail::Reset();
IRCmd = 0;
}
void CartRetailIR::DoSavestate(Savestate* file)
{
CartRetail::DoSavestate(file);
file->Var8(&IRCmd);
}
u8 CartRetailIR::SPIWrite(u8 val, u32 pos, bool last)
{
if (pos == 0)
{
IRCmd = val;
return 0;
}
// TODO: emulate actual IR comm
switch (IRCmd)
{
case 0x00: // pass-through
return CartRetail::SPIWrite(val, pos-1, last);
case 0x08: // ID
return 0xAA;
}
return 0;
}
CartRetailBT::CartRetailBT(const u8* rom, u32 len, u32 chipid, ROMListEntry romparams, std::unique_ptr<u8[]>&& sram, u32 sramlen, void* userdata) :
CartRetailBT(CopyToUnique(rom, len), len, chipid, romparams, std::move(sram), sramlen, userdata)
{
}
CartRetailBT::CartRetailBT(std::unique_ptr<u8[]>&& rom, u32 len, u32 chipid, ROMListEntry romparams, std::unique_ptr<u8[]>&& sram, u32 sramlen, void* userdata) :
CartRetail(std::move(rom), len, chipid, false, romparams, std::move(sram), sramlen, userdata, CartType::RetailBT)
{
Log(LogLevel::Info,"POKETYPE CART\n");
}
CartRetailBT::~CartRetailBT() = default;
u8 CartRetailBT::SPIWrite(u8 val, u32 pos, bool last)
{
//Log(LogLevel::Debug,"POKETYPE SPI: %02X %d %d - %08X\n", val, pos, last, NDS::GetPC(0));
/*if (pos == 0)
{
// TODO do something with it??
if(val==0xFF)SetIRQ();
}
if(pos==7)SetIRQ();*/
return 0;
}
CartSD::CartSD(const u8* rom, u32 len, u32 chipid, ROMListEntry romparams, void* userdata, std::optional<FATStorage>&& sdcard) :
CartSD(CopyToUnique(rom, len), len, chipid, romparams, userdata, std::move(sdcard))
{}
CartSD::CartSD(std::unique_ptr<u8[]>&& rom, u32 len, u32 chipid, ROMListEntry romparams, void* userdata, std::optional<FATStorage>&& sdcard) :
CartCommon(std::move(rom), len, chipid, false, romparams, CartType::Homebrew, userdata),
SD(std::move(sdcard))
{
sdcard = std::nullopt;
// std::move on optionals usually results in an optional with a moved-from object
}
CartSD::~CartSD() = default;
// The SD card is destroyed by the optional's destructor
void CartSD::ApplyDLDIPatchAt(u8* binary, u32 dldioffset, const u8* patch, u32 patchlen, bool readonly) const
{
if (patch[0x0D] > binary[dldioffset+0x0F])
{
Log(LogLevel::Error, "DLDI driver ain't gonna fit, sorry\n");
return;
}
Log(LogLevel::Info, "existing driver is: %s\n", &binary[dldioffset+0x10]);
Log(LogLevel::Info, "new driver is: %s\n", &patch[0x10]);
u32 memaddr = *(u32*)&binary[dldioffset+0x40];
if (memaddr == 0)
memaddr = *(u32*)&binary[dldioffset+0x68] - 0x80;
u32 patchbase = *(u32*)&patch[0x40];
u32 delta = memaddr - patchbase;
u32 patchsize = 1 << patch[0x0D];
u32 patchend = patchbase + patchsize;
memcpy(&binary[dldioffset], patch, patchlen);
*(u32*)&binary[dldioffset+0x40] += delta;
*(u32*)&binary[dldioffset+0x44] += delta;
*(u32*)&binary[dldioffset+0x48] += delta;
*(u32*)&binary[dldioffset+0x4C] += delta;
*(u32*)&binary[dldioffset+0x50] += delta;
*(u32*)&binary[dldioffset+0x54] += delta;
*(u32*)&binary[dldioffset+0x58] += delta;
*(u32*)&binary[dldioffset+0x5C] += delta;
*(u32*)&binary[dldioffset+0x68] += delta;
*(u32*)&binary[dldioffset+0x6C] += delta;
*(u32*)&binary[dldioffset+0x70] += delta;
*(u32*)&binary[dldioffset+0x74] += delta;
*(u32*)&binary[dldioffset+0x78] += delta;
*(u32*)&binary[dldioffset+0x7C] += delta;
u8 fixmask = patch[0x0E];
if (fixmask & 0x01)
{
u32 fixstart = *(u32*)&patch[0x40] - patchbase;
u32 fixend = *(u32*)&patch[0x44] - patchbase;
for (u32 addr = fixstart; addr < fixend; addr+=4)
{
u32 val = *(u32*)&binary[dldioffset+addr];
if (val >= patchbase && val < patchend)
*(u32*)&binary[dldioffset+addr] += delta;
}
}
if (fixmask & 0x02)
{
u32 fixstart = *(u32*)&patch[0x48] - patchbase;
u32 fixend = *(u32*)&patch[0x4C] - patchbase;
for (u32 addr = fixstart; addr < fixend; addr+=4)
{
u32 val = *(u32*)&binary[dldioffset+addr];
if (val >= patchbase && val < patchend)
*(u32*)&binary[dldioffset+addr] += delta;
}
}
if (fixmask & 0x04)
{
u32 fixstart = *(u32*)&patch[0x50] - patchbase;
u32 fixend = *(u32*)&patch[0x54] - patchbase;
for (u32 addr = fixstart; addr < fixend; addr+=4)
{
u32 val = *(u32*)&binary[dldioffset+addr];
if (val >= patchbase && val < patchend)
*(u32*)&binary[dldioffset+addr] += delta;
}
}
if (fixmask & 0x08)
{
u32 fixstart = *(u32*)&patch[0x58] - patchbase;
u32 fixend = *(u32*)&patch[0x5C] - patchbase;
memset(&binary[dldioffset+fixstart], 0, fixend-fixstart);
}
if (readonly)
{
// clear the can-write feature flag
binary[dldioffset+0x64] &= ~0x02;
// make writeSectors() return failure
u32 writesec_addr = *(u32*)&binary[dldioffset+0x74];
writesec_addr -= memaddr;
writesec_addr += dldioffset;
*(u32*)&binary[writesec_addr+0x00] = 0xE3A00000; // mov r0, #0
*(u32*)&binary[writesec_addr+0x04] = 0xE12FFF1E; // bx lr
}
Log(LogLevel::Debug, "applied DLDI patch at %08X\n", dldioffset);
}
void CartSD::ApplyDLDIPatch(const u8* patch, u32 patchlen, bool readonly)
{
if (*(u32*)&patch[0] != 0xBF8DA5ED ||
*(u32*)&patch[4] != 0x69684320 ||
*(u32*)&patch[8] != 0x006D6873)
{
Log(LogLevel::Error, "bad DLDI patch\n");
return;
}
u32 offset = *(u32*)&ROM[0x20];
u32 size = *(u32*)&ROM[0x2C];
u8* binary = &ROM[offset];
for (u32 i = 0; i < size; )
{
if (*(u32*)&binary[i ] == 0xBF8DA5ED &&
*(u32*)&binary[i+4] == 0x69684320 &&
*(u32*)&binary[i+8] == 0x006D6873)
{
Log(LogLevel::Debug, "DLDI structure found at %08X (%08X)\n", i, offset+i);
ApplyDLDIPatchAt(binary, i, patch, patchlen, readonly);
i += patchlen;
}
else
i++;
}
}
void CartSD::ReadROM_B7(u32 addr, u32 len, u8* data, u32 offset) const
{
// TODO: how strict should this be for homebrew?
addr &= (ROMLength-1);
memcpy(data+offset, ROM.get()+addr, len);
}
CartHomebrew::CartHomebrew(const u8* rom, u32 len, u32 chipid, ROMListEntry romparams, void* userdata, std::optional<FATStorage>&& sdcard) :
CartSD(rom, len, chipid, romparams, userdata, std::move(sdcard))
{}
CartHomebrew::CartHomebrew(std::unique_ptr<u8[]>&& rom, u32 len, u32 chipid, ROMListEntry romparams, void* userdata, std::optional<FATStorage>&& sdcard) :
CartSD(std::move(rom), len, chipid, romparams, userdata, std::move(sdcard))
{}
CartHomebrew::~CartHomebrew() = default;
void CartHomebrew::Reset()
{
CartSD::Reset();
if (SD)
ApplyDLDIPatch(melonDLDI, sizeof(melonDLDI), SD->IsReadOnly());
}
void CartHomebrew::SetupDirectBoot(const std::string& romname, NDS& nds)
{
CartCommon::SetupDirectBoot(romname, nds);
if (SD)
{
// add the ROM to the SD volume
if (!SD->InjectFile(romname, ROM.get(), ROMLength))
return;
// setup argv command line
char argv[512] = {0};
int argvlen;
strncpy(argv, "fat:/", 511);
strncat(argv, romname.c_str(), 511);
argvlen = strlen(argv);
const NDSHeader& header = GetHeader();
u32 argvbase = header.ARM9RAMAddress + header.ARM9Size;
argvbase = (argvbase + 0xF) & ~0xF;
for (u32 i = 0; i <= argvlen; i+=4)
nds.ARM9Write32(argvbase+i, *(u32*)&argv[i]);
nds.ARM9Write32(0x02FFFE70, 0x5F617267);
nds.ARM9Write32(0x02FFFE74, argvbase);
nds.ARM9Write32(0x02FFFE78, argvlen+1);
// The DSi version of ARM9Write32 will be called if nds is really a DSi
}
}
int CartHomebrew::ROMCommandStart(NDS& nds, NDSCart::NDSCartSlot& cartslot, const u8* cmd, u8* data, u32 len)
{
if (CmdEncMode != 2) return CartCommon::ROMCommandStart(nds, cartslot, cmd, data, len);
switch (cmd[0])
{
case 0xB7:
{
u32 addr = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
memset(data, 0, len);
if (((addr + len - 1) >> 12) != (addr >> 12))
{
u32 len1 = 0x1000 - (addr & 0xFFF);
ReadROM_B7(addr, len1, data, 0);
ReadROM_B7(addr+len1, len-len1, data, len1);
}
else
ReadROM_B7(addr, len, data, 0);
}
return 0;
case 0xC0: // SD read
{
u32 sector = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
if (SD) SD->ReadSectors(sector, len>>9, data);
}
return 0;
case 0xC1: // SD write
return 1;
default:
return CartCommon::ROMCommandStart(nds, cartslot, cmd, data, len);
}
}
void CartHomebrew::ROMCommandFinish(const u8* cmd, u8* data, u32 len)
{
if (CmdEncMode != 2) return CartCommon::ROMCommandFinish(cmd, data, len);
// TODO: delayed SD writing? like we have for SRAM
switch (cmd[0])
{
case 0xC1:
{
u32 sector = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
if (SD && !SD->IsReadOnly()) SD->WriteSectors(sector, len>>9, data);
}
break;
default:
return CartCommon::ROMCommandFinish(cmd, data, len);
}
}
NDSCartSlot::NDSCartSlot(melonDS::NDS& nds, std::unique_ptr<CartCommon>&& rom) noexcept : NDS(nds)
{
NDS.RegisterEventFunc(Event_ROMTransfer, ROMTransfer_PrepareData, MemberEventFunc(NDSCartSlot, ROMPrepareData));
NDS.RegisterEventFunc(Event_ROMTransfer, ROMTransfer_End, MemberEventFunc(NDSCartSlot, ROMEndTransfer));
NDS.RegisterEventFunc(Event_ROMSPITransfer, 0, MemberEventFunc(NDSCartSlot, SPITransferDone));
// All fields are default-constructed because they're listed as such in the class declaration
if (rom)
SetCart(std::move(rom));
}
NDSCartSlot::~NDSCartSlot() noexcept
{
NDS.UnregisterEventFunc(Event_ROMTransfer, ROMTransfer_PrepareData);
NDS.UnregisterEventFunc(Event_ROMTransfer, ROMTransfer_End);
NDS.UnregisterEventFunc(Event_ROMSPITransfer, 0);
// Cart is cleaned up automatically because it's a unique_ptr
}
void NDSCartSlot::Reset() noexcept
{
ResetCart();
}
void NDSCartSlot::DoSavestate(Savestate* file) noexcept
{
file->Section("NDSC");
file->Var16(&SPICnt);
file->Var32(&ROMCnt);
file->Var8(&SPIData);
file->Var32(&SPIDataPos);
file->Bool32(&SPIHold);
file->VarArray(ROMCommand.data(), sizeof(ROMCommand));
file->Var32(&ROMData);
file->VarArray(TransferData.data(), sizeof(TransferData));
file->Var32(&TransferPos);
file->Var32(&TransferLen);
file->Var32(&TransferDir);
file->VarArray(TransferCmd.data(), sizeof(TransferCmd));
// cart inserted/len/ROM/etc should be already populated
// savestate should be loaded after the right game is loaded
// (TODO: system to verify that indeed the right ROM is loaded)
// (what to CRC? whole ROM? code binaries? latter would be more convenient for ie. romhaxing)
u32 carttype = 0;
u32 cartchk = 0;
if (Cart)
{
carttype = Cart->Type();
cartchk = Cart->Checksum();
}
if (file->Saving)
{
file->Var32(&carttype);
file->Var32(&cartchk);
}
else
{
u32 savetype;
file->Var32(&savetype);
if (savetype != carttype) return;
u32 savechk;
file->Var32(&savechk);
if (savechk != cartchk) return;
}
if (Cart) Cart->DoSavestate(file);
}
bool ReadROMParams(u32 gamecode, ROMListEntry* params)
{
u32 offset = 0;
u32 chk_size = ROMListEntryCount >> 1;
for (;;)
{
u32 key = 0;
const ROMListEntry* curentry = &ROMList[offset + chk_size];
key = curentry->GameCode;
if (key == gamecode)
{
memcpy(params, curentry, sizeof(ROMListEntry));
return true;
}
else
{
if (key < gamecode)
{
if (chk_size == 0)
offset++;
else
offset += chk_size;
}
else if (chk_size == 0)
{
return false;
}
chk_size >>= 1;
}
if (offset >= ROMListEntryCount)
{
return false;
}
}
}
void NDSCartSlot::DecryptSecureArea(u8* out) noexcept
{
const NDSHeader& header = Cart->GetHeader();
const u8* cartrom = Cart->GetROM();
u32 gamecode = header.GameCodeAsU32();
u32 arm9base = header.ARM9ROMOffset;
memcpy(out, &cartrom[arm9base], 0x800);
Key1_InitKeycode(false, gamecode, 2, 2, NDS.GetARM7BIOS().data(), ARM7BIOSSize);
Key1_Decrypt((u32*)&out[0]);
Key1_InitKeycode(false, gamecode, 3, 2, NDS.GetARM7BIOS().data(), ARM7BIOSSize);
for (u32 i = 0; i < 0x800; i += 8)
Key1_Decrypt((u32*)&out[i]);
if (!strncmp((const char*)out, "encryObj", 8))
{
Log(LogLevel::Info, "Secure area decryption OK\n");
*(u32*)&out[0] = 0xE7FFDEFF;
*(u32*)&out[4] = 0xE7FFDEFF;
}
else
{
Log(LogLevel::Warn, "Secure area decryption failed\n");
for (u32 i = 0; i < 0x800; i += 4)
*(u32*)&out[i] = 0xE7FFDEFF;
}
}
std::unique_ptr<CartCommon> ParseROM(const u8* romdata, u32 romlen, void* userdata, std::optional<NDSCartArgs>&& args)
{
return ParseROM(CopyToUnique(romdata, romlen), romlen, userdata, std::move(args));
}
std::unique_ptr<CartCommon> ParseROM(std::unique_ptr<u8[]>&& romdata, u32 romlen, void* userdata, std::optional<NDSCartArgs>&& args)
{
if (romdata == nullptr)
{
Log(LogLevel::Error, "NDSCart: romdata is null\n");
return nullptr;
}
if (romlen == 0)
{
Log(LogLevel::Error, "NDSCart: romlen is zero\n");
return nullptr;
}
auto [cartrom, cartromsize] = PadToPowerOf2(std::move(romdata), romlen);
NDSHeader header {};
memcpy(&header, cartrom.get(), sizeof(header));
bool dsi = header.IsDSi();
bool badDSiDump = false;
if (dsi && header.DSiRegionMask == RegionMask::NoRegion)
{
Log(LogLevel::Info, "DS header indicates DSi, but region is zero. Going in bad dump mode.\n");
badDSiDump = true;
dsi = false;
}
const char *gametitle = header.GameTitle;
u32 gamecode = header.GameCodeAsU32();
u32 arm9base = header.ARM9ROMOffset;
bool homebrew = header.IsHomebrew();
ROMListEntry romparams {};
if (!ReadROMParams(gamecode, &romparams))
{
// set defaults
Log(LogLevel::Warn, "ROM entry not found for gamecode %d\n", gamecode);
romparams.GameCode = gamecode;
romparams.ROMSize = cartromsize;
if (homebrew)
romparams.SaveMemType = 0; // no saveRAM for homebrew
else
romparams.SaveMemType = 2; // assume EEPROM 64k (TODO FIXME)
}
if (romparams.ROMSize != romlen)
Log(LogLevel::Warn, "!! bad ROM size %d (expected %d) rounded to %d\n", romlen, romparams.ROMSize, cartromsize);
// generate a ROM ID
// note: most games don't check the actual value
// it just has to stay the same throughout gameplay
u32 cartid = 0x000000C2;
if (cartromsize >= 1024 * 1024 && cartromsize <= 128 * 1024 * 1024)
cartid |= ((cartromsize >> 20) - 1) << 8;
else
cartid |= (0x100 - (cartromsize >> 28)) << 8;
if (romparams.SaveMemType >= 8 && romparams.SaveMemType <= 10)
cartid |= 0x08000000; // NAND flag
if (dsi)
cartid |= 0x40000000;
// cart ID for Jam with the Band
// TODO: this kind of ID triggers different KEY1 phase
// (repeats commands a bunch of times)
//cartid = 0x88017FEC;
//cartid = 0x80007FC2; // pokémon typing adventure
u32 irversion = 0;
if ((gamecode & 0xFF) == 'I')
{
if (((gamecode >> 8) & 0xFF) < 'P')
irversion = 1; // Active Health / Walk with Me
else
irversion = 2; // Pokémon HG/SS, B/W, B2/W2
}
std::unique_ptr<CartCommon> cart;
std::unique_ptr<u8[]> sram = args ? std::move(args->SRAM) : nullptr;
u32 sramlen = args ? args->SRAMLength : 0;
if (homebrew)
{
std::optional<FATStorage> sdcard = args && args->SDCard ? std::make_optional<FATStorage>(std::move(*args->SDCard)) : std::nullopt;
cart = std::make_unique<CartHomebrew>(std::move(cartrom), cartromsize, cartid, romparams, userdata, std::move(sdcard));
}
else if (gametitle[0] == 0 && !strncmp("SD/TF-NDS", gametitle + 1, 9) && gamecode == 0x414D5341)
{
std::optional<FATStorage> sdcard = args && args->SDCard ? std::make_optional<FATStorage>(std::move(*args->SDCard)) : std::nullopt;
cart = std::make_unique<CartR4>(std::move(cartrom), cartromsize, cartid, romparams, CartR4TypeR4, CartR4LanguageEnglish, userdata, std::move(sdcard));
}
else if (cartid & 0x08000000)
cart = std::make_unique<CartRetailNAND>(std::move(cartrom), cartromsize, cartid, romparams, std::move(sram), sramlen, userdata);
else if (irversion != 0)
cart = std::make_unique<CartRetailIR>(std::move(cartrom), cartromsize, cartid, irversion, badDSiDump, romparams, std::move(sram), sramlen, userdata);
else if ((gamecode & 0xFFFFFF) == 0x505A55) // UZPx
cart = std::make_unique<CartRetailBT>(std::move(cartrom), cartromsize, cartid, romparams, std::move(sram), sramlen, userdata);
else
cart = std::make_unique<CartRetail>(std::move(cartrom), cartromsize, cartid, badDSiDump, romparams, std::move(sram), sramlen, userdata);
args = std::nullopt;
return cart;
}
void NDSCartSlot::SetCart(std::unique_ptr<CartCommon>&& cart) noexcept
{
if (Cart)
EjectCart();
// Why a move function? Because the Cart object is polymorphic,
// and cloning polymorphic objects without knowing the underlying type is annoying.
Cart = std::move(cart);
if (!Cart)
// If we're ejecting an existing cart without inserting a new one...
return;
Cart->Reset();
const NDSHeader& header = Cart->GetHeader();
const ROMListEntry romparams = Cart->GetROMParams();
const u8* cartrom = Cart->GetROM();
if (header.ARM9ROMOffset >= 0x4000 && header.ARM9ROMOffset < 0x8000)
{
// reencrypt secure area if needed
if (*(u32*)&cartrom[header.ARM9ROMOffset] == 0xE7FFDEFF && *(u32*)&cartrom[header.ARM9ROMOffset + 0x10] != 0xE7FFDEFF)
{
Log(LogLevel::Debug, "Re-encrypting cart secure area\n");
strncpy((char*)&cartrom[header.ARM9ROMOffset], "encryObj", 8);
Key1_InitKeycode(false, romparams.GameCode, 3, 2, NDS.GetARM7BIOS().data(), ARM7BIOSSize);
for (u32 i = 0; i < 0x800; i += 8)
Key1_Encrypt((u32*)&cartrom[header.ARM9ROMOffset + i]);
Key1_InitKeycode(false, romparams.GameCode, 2, 2, NDS.GetARM7BIOS().data(), ARM7BIOSSize);
Key1_Encrypt((u32*)&cartrom[header.ARM9ROMOffset]);
Log(LogLevel::Debug, "Re-encrypted cart secure area\n");
}
else
{
Log(LogLevel::Debug, "No need to re-encrypt cart secure area\n");
}
}
Log(LogLevel::Info, "Inserted cart with game code: %.4s\n", header.GameCode);
Log(LogLevel::Info, "Inserted cart with ID: %08X\n", Cart->ID());
Log(LogLevel::Info, "ROM entry: %08X %08X\n", romparams.ROMSize, romparams.SaveMemType);
}
void NDSCartSlot::SetSaveMemory(const u8* savedata, u32 savelen) noexcept
{
if (Cart)
Cart->SetSaveMemory(savedata, savelen);
}
void NDSCartSlot::SetupDirectBoot(const std::string& romname) noexcept
{
if (Cart)
Cart->SetupDirectBoot(romname, NDS);
}
std::unique_ptr<CartCommon> NDSCartSlot::EjectCart() noexcept
{
if (!Cart) return nullptr;
// ejecting the cart triggers the gamecard IRQ
NDS.SetIRQ(0, IRQ_CartIREQMC);
NDS.SetIRQ(1, IRQ_CartIREQMC);
return std::move(Cart);
// CHECKME: does an eject imply anything for the ROM/SPI transfer registers?
}
void NDSCartSlot::ResetCart() noexcept
{
// CHECKME: what if there is a transfer in progress?
SPICnt = 0;
ROMCnt = 0;
SPIData = 0;
SPIDataPos = 0;
SPIHold = false;
memset(ROMCommand.data(), 0, sizeof(ROMCommand));
ROMData = 0;
Key2_X = 0;
Key2_Y = 0;
memset(TransferData.data(), 0, sizeof(TransferData));
TransferPos = 0;
TransferLen = 0;
TransferDir = 0;
memset(TransferCmd.data(), 0, sizeof(TransferCmd));
TransferCmd[0] = 0xFF;
if (Cart) Cart->Reset();
}
void NDSCartSlot::ROMEndTransfer(u32 param) noexcept
{
ROMCnt &= ~(1<<31);
if (SPICnt & (1<<14))
NDS.SetIRQ((NDS.ExMemCnt[0]>>11)&0x1, IRQ_CartXferDone);
if (Cart)
Cart->ROMCommandFinish(TransferCmd.data(), TransferData.data(), TransferLen);
}
void NDSCartSlot::ROMPrepareData(u32 param) noexcept
{
if (TransferDir == 0)
{
if (TransferPos >= TransferLen)
ROMData = 0;
else
ROMData = *(u32*)&TransferData[TransferPos];
TransferPos += 4;
}
ROMCnt |= (1<<23);
if (NDS.ExMemCnt[0] & (1<<11))
NDS.CheckDMAs(1, 0x12);
else
NDS.CheckDMAs(0, 0x05);
}
void NDSCartSlot::WriteROMCnt(u32 val) noexcept
{
u32 xferstart = (val & ~ROMCnt) & (1<<31);
ROMCnt = (val & 0xFF7F7FFF) | (ROMCnt & 0x20800000);
// all this junk would only really be useful if melonDS was interfaced to
// a DS cart reader
if (val & (1<<15))
{
u32 snum = (NDS.ExMemCnt[0]>>8)&0x8;
u64 seed0 = *(u32*)&NDS.ROMSeed0[snum] | ((u64)NDS.ROMSeed0[snum+4] << 32);
u64 seed1 = *(u32*)&NDS.ROMSeed1[snum] | ((u64)NDS.ROMSeed1[snum+4] << 32);
Key2_X = 0;
Key2_Y = 0;
for (u32 i = 0; i < 39; i++)
{
if (seed0 & (1ULL << i)) Key2_X |= (1ULL << (38-i));
if (seed1 & (1ULL << i)) Key2_Y |= (1ULL << (38-i));
}
Log(LogLevel::Debug, "seed0: %02X%08X\n", (u32)(seed0>>32), (u32)seed0);
Log(LogLevel::Debug, "seed1: %02X%08X\n", (u32)(seed1>>32), (u32)seed1);
Log(LogLevel::Debug, "key2 X: %02X%08X\n", (u32)(Key2_X>>32), (u32)Key2_X);
Log(LogLevel::Debug, "key2 Y: %02X%08X\n", (u32)(Key2_Y>>32), (u32)Key2_Y);
}
// transfers will only start when bit31 changes from 0 to 1
// and if AUXSPICNT is configured correctly
if (!(SPICnt & (1<<15))) return;
if (SPICnt & (1<<13)) return;
if (!xferstart) return;
u32 datasize = (ROMCnt >> 24) & 0x7;
if (datasize == 7)
datasize = 4;
else if (datasize > 0)
datasize = 0x100 << datasize;
TransferPos = 0;
TransferLen = datasize;
*(u32*)&TransferCmd[0] = *(u32*)&ROMCommand[0];
*(u32*)&TransferCmd[4] = *(u32*)&ROMCommand[4];
memset(TransferData.data(), 0xFF, TransferLen);
/*printf("ROM COMMAND %04X %08X %02X%02X%02X%02X%02X%02X%02X%02X SIZE %04X\n",
SPICnt, ROMCnt,
TransferCmd[0], TransferCmd[1], TransferCmd[2], TransferCmd[3],
TransferCmd[4], TransferCmd[5], TransferCmd[6], TransferCmd[7],
datasize);*/
// default is read
// commands that do writes will change this
TransferDir = 0;
if (Cart)
TransferDir = Cart->ROMCommandStart(NDS, *this, TransferCmd.data(), TransferData.data(), TransferLen);
if ((datasize > 0) && (((ROMCnt >> 30) & 0x1) != TransferDir))
Log(LogLevel::Debug, "NDSCART: !! BAD TRANSFER DIRECTION FOR CMD %02X, DIR=%d, ROMCNT=%08X\n", ROMCommand[0], TransferDir, ROMCnt);
ROMCnt &= ~(1<<23);
// ROM transfer timings
// the bus is parallel with 8 bits
// thus a command would take 8 cycles to be transferred
// and it would take 4 cycles to receive a word of data
// TODO: advance read position if bit28 is set
// TODO: during a write transfer, bit23 is set immediately when beginning the transfer(?)
u32 xfercycle = (ROMCnt & (1<<27)) ? 8 : 5;
u32 cmddelay = 8;
// delays are only applied when the WR bit is cleared
// CHECKME: do the delays apply at the end (instead of start) when WR is set?
if (!(ROMCnt & (1<<30)))
{
cmddelay += (ROMCnt & 0x1FFF);
if (datasize) cmddelay += ((ROMCnt >> 16) & 0x3F);
}
if (datasize == 0)
NDS.ScheduleEvent(Event_ROMTransfer, false, xfercycle*cmddelay, ROMTransfer_End, 0);
else
NDS.ScheduleEvent(Event_ROMTransfer, false, xfercycle*(cmddelay+4), ROMTransfer_PrepareData, 0);
}
void NDSCartSlot::AdvanceROMTransfer() noexcept
{
ROMCnt &= ~(1<<23);
if (TransferPos < TransferLen)
{
u32 xfercycle = (ROMCnt & (1<<27)) ? 8 : 5;
u32 delay = 4;
if (!(ROMCnt & (1<<30)))
{
if (!(TransferPos & 0x1FF))
delay += ((ROMCnt >> 16) & 0x3F);
}
NDS.ScheduleEvent(Event_ROMTransfer, false, xfercycle*delay, ROMTransfer_PrepareData, 0);
}
else
ROMEndTransfer(0);
}
u32 NDSCartSlot::ReadROMData() noexcept
{
if (ROMCnt & (1<<30)) return 0;
if (ROMCnt & (1<<23))
{
AdvanceROMTransfer();
}
return ROMData;
}
void NDSCartSlot::WriteROMData(u32 val) noexcept
{
if (!(ROMCnt & (1<<30))) return;
ROMData = val;
if (ROMCnt & (1<<23))
{
if (TransferDir == 1)
{
if (TransferPos < TransferLen)
*(u32*)&TransferData[TransferPos] = ROMData;
TransferPos += 4;
}
AdvanceROMTransfer();
}
}
void NDSCartSlot::WriteSPICnt(u16 val) noexcept
{
if ((SPICnt & 0x2040) == 0x2040 && (val & 0x2000) == 0x0000)
{
// forcefully reset SPI hold
SPIHold = false;
}
SPICnt = (SPICnt & 0x0080) | (val & 0xE043);
// AUXSPICNT can be changed during a transfer
// in this case, the transfer continues until the end, even if bit13 or bit15 are cleared
// if the transfer speed is changed, the transfer continues at the new speed (TODO)
if (SPICnt & (1<<7))
Log(LogLevel::Debug, "!! CHANGING AUXSPICNT DURING TRANSFER: %04X\n", val);
}
void NDSCartSlot::SPITransferDone(u32 param) noexcept
{
SPICnt &= ~(1<<7);
}
u8 NDSCartSlot::ReadSPIData() const noexcept
{
if (!(SPICnt & (1<<15))) return 0;
if (!(SPICnt & (1<<13))) return 0;
if (SPICnt & (1<<7)) return 0; // checkme
return SPIData;
}
void NDSCartSlot::WriteSPIData(u8 val) noexcept
{
if (!(SPICnt & (1<<15))) return;
if (!(SPICnt & (1<<13))) return;
if (SPICnt & (1<<7)) return;
SPICnt |= (1<<7);
bool hold = SPICnt&(1<<6);
bool islast = false;
if (!hold)
{
if (SPIHold) SPIDataPos++;
else SPIDataPos = 0;
islast = true;
SPIHold = false;
}
else if (hold && (!SPIHold))
{
SPIHold = true;
SPIDataPos = 0;
}
else
{
SPIDataPos++;
}
if (Cart) SPIData = Cart->SPIWrite(val, SPIDataPos, islast);
else SPIData = 0;
// SPI transfers one bit per cycle -> 8 cycles per byte
u32 delay = 8 * (8 << (SPICnt & 0x3));
NDS.ScheduleEvent(Event_ROMSPITransfer, false, delay, 0, 0);
}
}
}