melonDS/src/RTC.cpp
2024-06-15 17:01:19 +02:00

946 lines
22 KiB
C++

/*
Copyright 2016-2024 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <string.h>
#include "NDS.h"
#include "RTC.h"
#include "Platform.h"
namespace melonDS
{
using Platform::Log;
using Platform::LogLevel;
void WriteDateTime(int num, u8 val);
RTC::RTC(melonDS::NDS& nds) : NDS(nds)
{
NDS.RegisterEventFunc(Event_RTC, 0, MemberEventFunc(RTC, ClockTimer));
ResetState();
// indicate the power was off
// this will be changed if a previously saved RTC state is loaded
State.StatusReg1 = 0x80;
}
RTC::~RTC()
{
NDS.UnregisterEventFunc(Event_RTC, 0);
}
void RTC::Reset()
{
Input = 0;
InputBit = 0;
InputPos = 0;
memset(Output, 0, sizeof(Output));
OutputPos = 0;
CurCmd = 0;
ClockCount = 0;
ScheduleTimer(true);
}
void RTC::DoSavestate(Savestate* file)
{
file->Section("RTC.");
file->Var16(&IO);
file->Var8(&Input);
file->Var32(&InputBit);
file->Var32(&InputPos);
file->VarArray(Output, sizeof(Output));
file->Var32(&OutputBit);
file->Var32(&OutputPos);
file->Var8(&CurCmd);
file->VarArray(&State, sizeof(State));
file->Var32((u32*)&TimerError);
file->Var32(&ClockCount);
}
u8 RTC::BCD(u8 val) const
{
return (val % 10) | ((val / 10) << 4);
}
u8 RTC::FromBCD(u8 val) const
{
return (val & 0xF) + ((val >> 4) * 10);
}
u8 RTC::BCDIncrement(u8 val) const
{
val++;
if ((val & 0x0F) >= 0x0A)
val += 0x06;
if ((val & 0xF0) >= 0xA0)
val += 0x60;
return val;
}
u8 RTC::BCDSanitize(u8 val, u8 vmin, u8 vmax) const
{
if (val < vmin || val > vmax)
val = vmin;
else if ((val & 0x0F) >= 0x0A)
val = vmin;
else if ((val & 0xF0) >= 0xA0)
val = vmin;
return val;
}
void RTC::GetState(StateData& state) const
{
memcpy(&state, &State, sizeof(State));
}
void RTC::SetState(const StateData& state)
{
memcpy(&State, &state, sizeof(State));
// sanitize the input state
for (int i = 0; i < 7; i++)
WriteDateTime(i+1, State.DateTime[i]);
}
void RTC::GetDateTime(int& year, int& month, int& day, int& hour, int& minute, int& second) const
{
year = FromBCD(State.DateTime[0]);
year += 2000;
month = FromBCD(State.DateTime[1] & 0x3F);
day = FromBCD(State.DateTime[2] & 0x3F);
hour = FromBCD(State.DateTime[4] & 0x3F);
if (!(State.StatusReg1 & (1<<1)))
{
// 12-hour mode
if (State.DateTime[4] & 0x40)
hour += 12;
}
minute = FromBCD(State.DateTime[5] & 0x7F);
second = FromBCD(State.DateTime[6] & 0x7F);
}
void RTC::SetDateTime(int year, int month, int day, int hour, int minute, int second)
{
int monthdays[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
// the year range of the DS RTC is limited to 2000-2099
year %= 100;
if (year < 0) year = 0;
if (!(year & 3)) monthdays[2] = 29;
if (month < 1 || month > 12) month = 1;
if (day < 1 || day > monthdays[month]) day = 1;
if (hour < 0 || hour > 23) hour = 0;
if (minute < 0 || minute > 59) minute = 0;
if (second < 0 || second > 59) second = 0;
// note on day-of-week value
// that RTC register is a simple incrementing counter and the assignation is defined by software
// DS/DSi firmware counts from 0=Sunday
int numdays = (year * 365) + ((year+3) / 4); // account for leap years
for (int m = 1; m < month; m++)
{
numdays += monthdays[m];
}
numdays += (day-1);
// 01/01/2000 is a Saturday, so the starting value is 6
int dayofweek = (6 + numdays) % 7;
int pm = (hour >= 12) ? 0x40 : 0;
if (!(State.StatusReg1 & (1<<1)))
{
// 12-hour mode
if (pm) hour -= 12;
}
State.DateTime[0] = BCD(year);
State.DateTime[1] = BCD(month);
State.DateTime[2] = BCD(day);
State.DateTime[3] = dayofweek;
State.DateTime[4] = BCD(hour) | pm;
State.DateTime[5] = BCD(minute);
State.DateTime[6] = BCD(second);
State.StatusReg1 &= ~0x80;
}
void RTC::ResetState()
{
memset(&State, 0, sizeof(State));
State.DateTime[1] = 1;
State.DateTime[2] = 1;
}
void RTC::SetIRQ(u8 irq)
{
u8 oldstat = State.IRQFlag;
State.IRQFlag |= irq;
State.StatusReg1 |= irq;
if ((!(oldstat & 0x30)) && (State.IRQFlag & 0x30))
{
if ((NDS.RCnt & 0xC100) == 0x8100)
{
// CHECKME: is the IRQ status readable in RCNT?
NDS.SetIRQ(1, IRQ_RTC);
}
}
}
void RTC::ClearIRQ(u8 irq)
{
State.IRQFlag &= ~irq;
}
void RTC::ProcessIRQ(int type) // 0=minute carry 1=periodic 2=status reg write
{
// INT1
switch (State.StatusReg2 & 0x0F)
{
case 0b0000: // none
if (type == 2)
{
ClearIRQ(0x10);
}
break;
case 0b0001:
case 0b0101: // selected frequency steady interrupt
if ((type == 1 && (!(ClockCount & 0x3FF))) || (type == 2))
{
u32 mask = 0;
if (State.Alarm1[2] & (1<<0)) mask |= 0x4000;
if (State.Alarm1[2] & (1<<1)) mask |= 0x2000;
if (State.Alarm1[2] & (1<<2)) mask |= 0x1000;
if (State.Alarm1[2] & (1<<3)) mask |= 0x0800;
if (State.Alarm1[2] & (1<<4)) mask |= 0x0400;
if (mask && ((ClockCount & mask) != mask))
SetIRQ(0x10);
else
ClearIRQ(0x10);
}
break;
case 0b0010:
case 0b0110: // per-minute edge interrupt
if ((type == 0) || (type == 2 && (State.IRQFlag & 0x01)))
{
SetIRQ(0x10);
}
break;
case 0b0011: // per-minute steady interrupt 1 (duty 30s)
if ((type == 0) || (type == 2 && (State.IRQFlag & 0x01)))
{
SetIRQ(0x10);
}
else if ((type == 1) && (State.DateTime[6] == 0x30) && ((ClockCount & 0x7FFF) == 0))
{
ClearIRQ(0x10);
}
break;
case 0b0111: // per-minute steady interrupt 2 (duty 256 cycles)
if ((type == 0) || (type == 2 && (State.IRQFlag & 0x01)))
{
SetIRQ(0x10);
}
else if ((type == 1) && (State.DateTime[6] == 0x00) && ((ClockCount & 0x7FFF) == 256))
{
ClearIRQ(0x10);
}
break;
case 0b0100: // alarm interrupt
if (type == 0)
{
bool cond = true;
if (State.Alarm1[0] & (1<<7))
cond = cond && ((State.Alarm1[0] & 0x07) == State.DateTime[3]);
if (State.Alarm1[1] & (1<<7))
cond = cond && ((State.Alarm1[1] & 0x7F) == State.DateTime[4]);
if (State.Alarm1[2] & (1<<7))
cond = cond && ((State.Alarm1[2] & 0x7F) == State.DateTime[5]);
if (NDS.ConsoleType == 1)
{
if (State.AlarmDate1[1] & (1<<6))
cond = cond && (State.AlarmDate1[0] == State.DateTime[0]);
if (State.AlarmDate1[1] & (1<<7))
cond = cond && ((State.AlarmDate1[1] & 0x1F) == State.DateTime[1]);
if (State.AlarmDate1[2] & (1<<7))
cond = cond && ((State.AlarmDate1[2] & 0x3F) == State.DateTime[2]);
}
if (cond)
SetIRQ(0x10);
else
ClearIRQ(0x10);
}
break;
default: // 32KHz output
if (type == 1)
{
SetIRQ(0x10);
ClearIRQ(0x10);
}
break;
}
// INT2
if (State.StatusReg2 & (1<<6))
{
// alarm interrupt
if (type == 0)
{
bool cond = true;
if (State.Alarm2[0] & (1<<7))
cond = cond && ((State.Alarm2[0] & 0x07) == State.DateTime[3]);
if (State.Alarm2[1] & (1<<7))
cond = cond && ((State.Alarm2[1] & 0x7F) == State.DateTime[4]);
if (State.Alarm2[2] & (1<<7))
cond = cond && ((State.Alarm2[2] & 0x7F) == State.DateTime[5]);
if (NDS.ConsoleType == 1)
{
if (State.AlarmDate2[1] & (1<<6))
cond = cond && (State.AlarmDate2[0] == State.DateTime[0]);
if (State.AlarmDate2[1] & (1<<7))
cond = cond && ((State.AlarmDate2[1] & 0x1F) == State.DateTime[1]);
if (State.AlarmDate2[2] & (1<<7))
cond = cond && ((State.AlarmDate2[2] & 0x3F) == State.DateTime[2]);
}
if (cond)
SetIRQ(0x20);
else
ClearIRQ(0x20);
}
}
else
{
if (type == 2)
{
ClearIRQ(0x20);
}
}
}
u8 RTC::DaysInMonth() const
{
u8 numdays;
switch (State.DateTime[1])
{
case 0x01: // Jan
case 0x03: // Mar
case 0x05: // May
case 0x07: // Jul
case 0x08: // Aug
case 0x10: // Oct
case 0x12: // Dec
numdays = 0x31;
break;
case 0x04: // Apr
case 0x06: // Jun
case 0x09: // Sep
case 0x11: // Nov
numdays = 0x30;
break;
case 0x02: // Feb
{
numdays = 0x28;
// leap year: if year divisible by 4 and not divisible by 100 unless divisible by 400
// the limited year range (2000-2099) simplifies this
int year = State.DateTime[0];
year = (year & 0xF) + ((year >> 4) * 10);
if (!(year & 3))
numdays = 0x29;
}
break;
default: // ???
return 0;
}
return numdays;
}
void RTC::CountYear()
{
State.DateTime[0] = BCDIncrement(State.DateTime[0]);
}
void RTC::CountMonth()
{
State.DateTime[1] = BCDIncrement(State.DateTime[1]);
if (State.DateTime[1] > 0x12)
{
State.DateTime[1] = 1;
CountYear();
}
}
void RTC::CheckEndOfMonth()
{
if (State.DateTime[2] > DaysInMonth())
{
State.DateTime[2] = 1;
CountMonth();
}
}
void RTC::CountDay()
{
// day-of-week counter
State.DateTime[3]++;
if (State.DateTime[3] >= 7)
State.DateTime[3] = 0;
// day counter
State.DateTime[2] = BCDIncrement(State.DateTime[2]);
CheckEndOfMonth();
}
void RTC::CountHour()
{
u8 hour = BCDIncrement(State.DateTime[4] & 0x3F);
u8 pm = State.DateTime[4] & 0x40;
if (State.StatusReg1 & (1<<1))
{
// 24-hour mode
if (hour >= 0x24)
{
hour = 0;
CountDay();
}
pm = (hour >= 0x12) ? 0x40 : 0;
}
else
{
// 12-hour mode
if (hour >= 0x12)
{
hour = 0;
if (pm) CountDay();
pm ^= 0x40;
}
}
State.DateTime[4] = hour | pm;
}
void RTC::CountMinute()
{
State.MinuteCount++;
State.DateTime[5] = BCDIncrement(State.DateTime[5]);
if (State.DateTime[5] >= 0x60)
{
State.DateTime[5] = 0;
CountHour();
}
State.IRQFlag |= 0x01; // store minute carry flag
ProcessIRQ(0);
}
void RTC::CountSecond()
{
State.DateTime[6] = BCDIncrement(State.DateTime[6]);
if (State.DateTime[6] >= 0x60)
{
State.DateTime[6] = 0;
CountMinute();
}
}
void RTC::ScheduleTimer(bool first)
{
if (first) TimerError = 0;
// the RTC clock runs at 32768Hz
// cycles = 33513982 / 32768
s32 sysclock = 33513982 + TimerError;
s32 delay = sysclock >> 15;
TimerError = sysclock & 0x7FFF;
NDS.ScheduleEvent(Event_RTC, !first, delay, 0, 0);
}
void RTC::ClockTimer(u32 param)
{
ClockCount++;
if (!(ClockCount & 0x7FFF))
{
// count up one second
CountSecond();
}
else if ((ClockCount & 0x7FFF) == 4)
{
// minute-carry flag lasts 4 cycles
State.IRQFlag &= ~0x01;
}
ProcessIRQ(1);
ScheduleTimer(false);
}
void RTC::WriteDateTime(int num, u8 val)
{
switch (num)
{
case 1: // year
State.DateTime[0] = BCDSanitize(val, 0x00, 0x99);
break;
case 2: // month
State.DateTime[1] = BCDSanitize(val & 0x1F, 0x01, 0x12);
break;
case 3: // day
State.DateTime[2] = BCDSanitize(val & 0x3F, 0x01, 0x31);
CheckEndOfMonth();
break;
case 4: // day of week
State.DateTime[3] = BCDSanitize(val & 0x07, 0x00, 0x06);
break;
case 5: // hour
{
u8 hour = val & 0x3F;
u8 pm = val & 0x40;
if (State.StatusReg1 & (1<<1))
{
// 24-hour mode
hour = BCDSanitize(hour, 0x00, 0x23);
pm = (hour >= 0x12) ? 0x40 : 0;
}
else
{
// 12-hour mode
hour = BCDSanitize(hour, 0x00, 0x11);
}
State.DateTime[4] = hour | pm;
}
break;
case 6: // minute
State.DateTime[5] = BCDSanitize(val & 0x7F, 0x00, 0x59);
break;
case 7: // second
State.DateTime[6] = BCDSanitize(val & 0x7F, 0x00, 0x59);
break;
}
}
void RTC::SaveDateTime()
{
int y, m, d, h, i, s;
GetDateTime(y, m, d, h, i, s);
Platform::WriteDateTime(y, m, d, h, i, s, NDS.UserData);
}
void RTC::CmdRead()
{
if ((CurCmd & 0x0F) == 0x06)
{
switch (CurCmd & 0x70)
{
case 0x00:
Output[0] = State.StatusReg1;
State.StatusReg1 &= 0x0F; // clear auto-clearing bit4-7
break;
case 0x40:
Output[0] = State.StatusReg2;
break;
case 0x20:
memcpy(Output, &State.DateTime[0], 7);
break;
case 0x60:
memcpy(Output, &State.DateTime[4], 3);
break;
case 0x10:
if (State.StatusReg2 & 0x04)
memcpy(Output, &State.Alarm1[0], 3);
else
Output[0] = State.Alarm1[2];
break;
case 0x50:
memcpy(Output, &State.Alarm2[0], 3);
break;
case 0x30: Output[0] = State.ClockAdjust; break;
case 0x70: Output[0] = State.FreeReg; break;
}
return;
}
else if ((CurCmd & 0x0F) == 0x0E)
{
if (NDS.ConsoleType != 1)
{
Log(LogLevel::Debug, "RTC: unknown read command %02X\n", CurCmd);
return;
}
switch (CurCmd & 0x70)
{
case 0x00:
Output[0] = (State.MinuteCount >> 16) & 0xFF;
Output[1] = (State.MinuteCount >> 8) & 0xFF;
Output[2] = State.MinuteCount & 0xFF;
break;
case 0x40: Output[0] = State.FOUT1; break;
case 0x20: Output[0] = State.FOUT2; break;
case 0x10:
memcpy(Output, &State.AlarmDate1[0], 3);
break;
case 0x50:
memcpy(Output, &State.AlarmDate2[0], 3);
break;
default:
Log(LogLevel::Debug, "RTC: unknown read command %02X\n", CurCmd);
break;
}
return;
}
Log(LogLevel::Debug, "RTC: unknown read command %02X\n", CurCmd);
}
void RTC::CmdWrite(u8 val)
{
if ((CurCmd & 0x0F) == 0x06)
{
switch (CurCmd & 0x70)
{
case 0x00:
if (InputPos == 1)
{
u8 oldval = State.StatusReg1;
if (val & (1<<0)) // reset
ResetState();
State.StatusReg1 = (State.StatusReg1 & 0xF0) | (val & 0x0E);
if ((State.StatusReg1 ^ oldval) & (1<<1))
{
// AM/PM changed
u8 hour = State.DateTime[4] & 0x3F;
u8 pm = State.DateTime[4] & 0x40;
if (State.StatusReg1 & (1<<1))
{
// 24-hour mode
if (pm)
{
hour += 0x12;
if ((hour & 0x0F) >= 0x0A)
hour += 0x06;
}
hour = BCDSanitize(hour, 0x00, 0x23);
}
else
{
// 12-hour mode
if (hour >= 0x12)
{
pm = 0x40;
hour -= 0x12;
if ((hour & 0x0F) >= 0x0A)
hour -= 0x06;
}
else
pm = 0;
hour = BCDSanitize(hour, 0x00, 0x11);
}
State.DateTime[4] = hour | pm;
}
}
break;
case 0x40:
if (InputPos == 1)
{
State.StatusReg2 = val;
ProcessIRQ(2);
}
break;
case 0x20:
if (InputPos <= 7)
WriteDateTime(InputPos, val);
if (InputPos == 7)
SaveDateTime();
break;
case 0x60:
if (InputPos <= 3)
WriteDateTime(InputPos+4, val);
if (InputPos == 3)
SaveDateTime();
break;
case 0x10:
if (State.StatusReg2 & 0x04)
{
if (InputPos <= 3)
State.Alarm1[InputPos-1] = val;
}
else
{
if (InputPos == 1)
State.Alarm1[2] = val;
}
break;
case 0x50:
if (InputPos <= 3)
State.Alarm2[InputPos-1] = val;
break;
case 0x30:
if (InputPos == 1)
State.ClockAdjust = val;
break;
case 0x70:
if (InputPos == 1)
State.FreeReg = val;
break;
}
return;
}
else if ((CurCmd & 0x0F) == 0x0E)
{
if (NDS.ConsoleType != 1)
{
Log(LogLevel::Debug, "RTC: unknown write command %02X\n", CurCmd);
return;
}
switch (CurCmd & 0x70)
{
case 0x00:
Log(LogLevel::Debug, "RTC: trying to write read-only minute counter\n");
break;
case 0x40:
if (InputPos == 1)
State.FOUT1 = val;
break;
case 0x20:
if (InputPos == 1)
State.FOUT2 = val;
break;
case 0x10:
if (InputPos <= 3)
State.AlarmDate1[InputPos-1] = val;
break;
case 0x50:
if (InputPos <= 3)
State.AlarmDate2[InputPos-1] = val;
break;
default:
Log(LogLevel::Debug, "RTC: unknown write command %02X\n", CurCmd);
break;
}
return;
}
Log(LogLevel::Debug, "RTC: unknown write command %02X\n", CurCmd);
}
void RTC::ByteIn(u8 val)
{
if (InputPos == 0)
{
if ((val & 0xF0) == 0x60)
{
u8 rev[16] = {0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6};
CurCmd = rev[val & 0xF];
}
else
CurCmd = val;
if (NDS.ConsoleType == 1)
{
// for DSi: handle extra commands
if (((CurCmd & 0xF0) == 0x70) && ((CurCmd & 0xFE) != 0x76))
{
u8 rev[16] = {0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE};
CurCmd = rev[CurCmd & 0xF];
}
}
if (CurCmd & 0x80)
{
CmdRead();
}
return;
}
CmdWrite(val);
}
u16 RTC::Read()
{
//printf("RTC READ %04X\n", IO);
return IO;
}
void RTC::Write(u16 val, bool byte)
{
if (byte) val |= (IO & 0xFF00);
//printf("RTC WRITE %04X\n", val);
if (val & 0x0004)
{
if (!(IO & 0x0004))
{
// start transfer
Input = 0;
InputBit = 0;
InputPos = 0;
memset(Output, 0, sizeof(Output));
OutputBit = 0;
OutputPos = 0;
}
else
{
if (!(val & 0x0002)) // clock low
{
if (val & 0x0010)
{
// write
if (val & 0x0001)
Input |= (1<<InputBit);
InputBit++;
if (InputBit >= 8)
{
InputBit = 0;
ByteIn(Input);
Input = 0;
InputPos++;
}
}
else
{
// read
if (Output[OutputPos] & (1<<OutputBit))
IO |= 0x0001;
else
IO &= 0xFFFE;
OutputBit++;
if (OutputBit >= 8)
{
OutputBit = 0;
if (OutputPos < 7)
OutputPos++;
}
}
}
}
}
if (val & 0x0010)
IO = val;
else
IO = (IO & 0x0001) | (val & 0xFFFE);
}
}