melonDS/src/DSi_AES.cpp
2019-06-19 22:08:35 +02:00

349 lines
7.0 KiB
C++

/*
Copyright 2016-2019 Arisotura
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "DSi.h"
#include "DSi_AES.h"
#include "FIFO.h"
#include "tiny-AES-c/aes.hpp"
namespace DSi_AES
{
u32 Cnt;
u32 BlkCnt;
u32 RemBlocks;
u32 InputDMASize, OutputDMASize;
u32 AESMode;
FIFO<u32>* InputFIFO;
FIFO<u32>* OutputFIFO;
u8 IV[16];
u8 KeyNormal[4][16];
u8 KeyX[4][16];
u8 KeyY[4][16];
u8 CurKey[16];
AES_ctx Ctx;
void Swap16(u8* dst, u8* src)
{
for (int i = 0; i < 16; i++)
dst[i] = src[15-i];
}
void ROL16(u8* val, u32 n)
{
u32 n_coarse = n >> 3;
u32 n_fine = n & 7;
u8 tmp[16];
for (u32 i = 0; i < 16; i++)
{
tmp[i] = val[(i - n_coarse) & 0xF];
}
for (u32 i = 0; i < 16; i++)
{
val[i] = (tmp[i] << n_fine) | (tmp[(i - 1) & 0xF] >> (8-n_fine));
}
}
#define _printhex(str, size) { for (int z = 0; z < (size); z++) printf("%02X", (str)[z]); printf("\n"); }
bool Init()
{
InputFIFO = new FIFO<u32>(16);
OutputFIFO = new FIFO<u32>(16);
const u8 zero[16] = {0};
AES_init_ctx_iv(&Ctx, zero, zero);
return true;
}
void DeInit()
{
delete InputFIFO;
delete OutputFIFO;
}
void Reset()
{
Cnt = 0;
BlkCnt = 0;
RemBlocks = 0;
InputDMASize = 0;
OutputDMASize = 0;
AESMode = 0;
InputFIFO->Clear();
OutputFIFO->Clear();
memset(KeyNormal, 0, sizeof(KeyNormal));
memset(KeyX, 0, sizeof(KeyX));
memset(KeyY, 0, sizeof(KeyY));
memset(CurKey, 0, sizeof(CurKey));
// initialize keys, as per GBAtek
// slot 3: console-unique eMMC crypto
*(u32*)&KeyX[3][0] = (u32)DSi::ConsoleID;
*(u32*)&KeyX[3][4] = (u32)DSi::ConsoleID ^ 0x24EE6906;
*(u32*)&KeyX[3][8] = (u32)(DSi::ConsoleID >> 32) ^ 0xE65B601D;
*(u32*)&KeyX[3][12] = (u32)(DSi::ConsoleID >> 32);
*(u32*)&KeyY[3][0] = 0x0AB9DC76;
*(u32*)&KeyY[3][4] = 0xBD4DC4D3;
*(u32*)&KeyY[3][8] = 0x202DDD1D;
}
void ProcessBlock_CTR()
{
u8 data[16];
u8 data_rev[16];
*(u32*)&data[0] = InputFIFO->Read();
*(u32*)&data[4] = InputFIFO->Read();
*(u32*)&data[8] = InputFIFO->Read();
*(u32*)&data[12] = InputFIFO->Read();
//printf("AES-CTR: INPUT: "); _printhex(data, 16);
Swap16(data_rev, data);
AES_CTR_xcrypt_buffer(&Ctx, data_rev, 16);
Swap16(data, data_rev);
//printf("AES-CTR: OUTPUT: "); _printhex(data, 16);
OutputFIFO->Write(*(u32*)&data[0]);
OutputFIFO->Write(*(u32*)&data[4]);
OutputFIFO->Write(*(u32*)&data[8]);
OutputFIFO->Write(*(u32*)&data[12]);
}
u32 ReadCnt()
{
u32 ret = Cnt;
ret |= InputFIFO->Level();
ret |= (OutputFIFO->Level() << 5);
return ret;
}
void WriteCnt(u32 val)
{
u32 oldcnt = Cnt;
Cnt = val & 0xFC1FF000;
if (val & (1<<10)) InputFIFO->Clear();
if (val & (1<<11)) OutputFIFO->Clear();
u32 dmasize[4] = {4, 8, 12, 16};
InputDMASize = dmasize[3 - ((val >> 12) & 0x3)];
OutputDMASize = dmasize[(val >> 14) & 0x3];
AESMode = (val >> 28) & 0x3;
if (AESMode < 2) printf("AES-CCM TODO\n");
if (val & (1<<24))
{
u32 slot = (val >> 26) & 0x3;
memcpy(CurKey, KeyNormal[slot], 16);
//printf("AES: key(%d): ", slot); _printhex(CurKey, 16);
u8 tmp[16];
Swap16(tmp, CurKey);
AES_init_ctx(&Ctx, tmp);
}
if (!(oldcnt & (1<<31)) && (val & (1<<31)))
{
// transfer start (checkme)
RemBlocks = BlkCnt >> 16;
DSi::CheckNDMAs(1, 0x2A);
}
printf("AES CNT: %08X / mode=%d inDMA=%d outDMA=%d blocks=%d\n",
val, AESMode, InputDMASize, OutputDMASize, RemBlocks);
}
void WriteBlkCnt(u32 val)
{
BlkCnt = val;
}
u32 ReadOutputFIFO()
{
u32 ret = OutputFIFO->Read();
CheckInputDMA();
CheckOutputDMA();
return ret;
}
void WriteInputFIFO(u32 val)
{
// TODO: add some delay to processing
InputFIFO->Write(val);
if (!(Cnt & (1<<31))) return;
Update();
}
void CheckInputDMA()
{
if (InputFIFO->Level() < InputDMASize)
{
// trigger input DMA
DSi::CheckNDMAs(1, 0x2A);
}
Update();
}
void CheckOutputDMA()
{
if (OutputFIFO->Level() >= OutputDMASize)
{
// trigger output DMA
DSi::CheckNDMAs(1, 0x2B);
}
}
void Update()
{
while (InputFIFO->Level() >= 4 && OutputFIFO->Level() <= 12 && RemBlocks > 0)
{
switch (AESMode)
{
case 2:
case 3: ProcessBlock_CTR(); break;
default:
// dorp
OutputFIFO->Write(InputFIFO->Read());
OutputFIFO->Write(InputFIFO->Read());
OutputFIFO->Write(InputFIFO->Read());
OutputFIFO->Write(InputFIFO->Read());
}
RemBlocks--;
}
CheckOutputDMA();
if (RemBlocks == 0)
{
Cnt &= ~(1<<31);
if (Cnt & (1<<30)) NDS::SetIRQ2(NDS::IRQ2_DSi_AES);
DSi::StopNDMAs(1, 0x2A);
DSi::StopNDMAs(1, 0x2B);
}
}
void WriteIV(u32 offset, u32 val, u32 mask)
{
u32 old = *(u32*)&IV[offset];
*(u32*)&IV[offset] = (old & ~mask) | (val & mask);
//printf("AES: IV: "); _printhex(IV, 16);
u8 tmp[16];
Swap16(tmp, IV);
AES_ctx_set_iv(&Ctx, tmp);
}
void WriteMAC(u32 offset, u32 val, u32 mask)
{
//
}
void DeriveNormalKey(u32 slot)
{
const u8 key_const[16] = {0xFF, 0xFE, 0xFB, 0x4E, 0x29, 0x59, 0x02, 0x58, 0x2A, 0x68, 0x0F, 0x5F, 0x1A, 0x4F, 0x3E, 0x79};
u8 tmp[16];
//printf("keyX: "); _printhex(KeyX[slot], 16);
//printf("keyY: "); _printhex(KeyY[slot], 16);
for (int i = 0; i < 16; i++)
tmp[i] = KeyX[slot][i] ^ KeyY[slot][i];
u32 carry = 0;
for (int i = 0; i < 16; i++)
{
u32 res = tmp[i] + key_const[15-i] + carry;
tmp[i] = res & 0xFF;
carry = res >> 8;
}
ROL16(tmp, 42);
//printf("derive normalkey %d\n", slot); _printhex(tmp, 16);
memcpy(KeyNormal[slot], tmp, 16);
}
void WriteKeyNormal(u32 slot, u32 offset, u32 val, u32 mask)
{
u32 old = *(u32*)&KeyNormal[slot][offset];
*(u32*)&KeyNormal[slot][offset] = (old & ~mask) | (val & mask);
}
void WriteKeyX(u32 slot, u32 offset, u32 val, u32 mask)
{
u32 old = *(u32*)&KeyX[slot][offset];
*(u32*)&KeyX[slot][offset] = (old & ~mask) | (val & mask);
}
void WriteKeyY(u32 slot, u32 offset, u32 val, u32 mask)
{
u32 old = *(u32*)&KeyY[slot][offset];
*(u32*)&KeyY[slot][offset] = (old & ~mask) | (val & mask);
if (offset >= 0xC)
{
DeriveNormalKey(slot);
}
}
}