Files
melonDS/src/ARMJIT_x64/ARMJIT_ALU.cpp
2020-04-26 13:03:00 +02:00

713 lines
18 KiB
C++

#include "ARMJIT_Compiler.h"
using namespace Gen;
namespace ARMJIT
{
// uses RSCRATCH3
void Compiler::Comp_ArithTriOp(void (Compiler::*op)(int, const OpArg&, const OpArg&),
OpArg rd, OpArg rn, OpArg op2, bool carryUsed, int opFlags)
{
if (opFlags & opSyncCarry)
{
BT(32, R(RCPSR), Imm8(29));
if (opFlags & opInvertCarry)
CMC();
}
if (rd == rn && !(opFlags & opInvertOp2))
(this->*op)(32, rd, op2);
else if (opFlags & opSymmetric && op2 == R(RSCRATCH))
{
if (opFlags & opInvertOp2)
NOT(32, op2);
(this->*op)(32, op2, rn);
MOV(32, rd, op2);
}
else
{
if (opFlags & opInvertOp2)
{
if (op2 != R(RSCRATCH))
{
MOV(32, R(RSCRATCH), op2);
op2 = R(RSCRATCH);
}
NOT(32, op2);
}
MOV(32, R(RSCRATCH3), rn);
(this->*op)(32, R(RSCRATCH3), op2);
MOV(32, rd, R(RSCRATCH3));
}
if (opFlags & opSetsFlags)
Comp_RetriveFlags(opFlags & opInvertCarry, opFlags & opRetriveCV, carryUsed);
}
void Compiler::Comp_ArithTriOpReverse(void (Compiler::*op)(int, const Gen::OpArg&, const Gen::OpArg&),
Gen::OpArg rd, Gen::OpArg rn, Gen::OpArg op2, bool carryUsed, int opFlags)
{
if (opFlags & opSyncCarry)
{
BT(32, R(RCPSR), Imm8(29));
if (opFlags & opInvertCarry)
CMC();
}
if (op2 != R(RSCRATCH))
{
MOV(32, R(RSCRATCH), op2);
op2 = R(RSCRATCH);
}
(this->*op)(32, op2, rn);
MOV(32, rd, op2);
if (opFlags & opSetsFlags)
Comp_RetriveFlags(opFlags & opInvertCarry, opFlags & opRetriveCV, carryUsed);
}
void Compiler::Comp_CmpOp(int op, Gen::OpArg rn, Gen::OpArg op2, bool carryUsed)
{
switch (op)
{
case 0: // TST
if (rn.IsImm())
{
MOV(32, R(RSCRATCH3), rn);
rn = R(RSCRATCH3);
}
TEST(32, rn, op2);
break;
case 1: // TEQ
MOV(32, R(RSCRATCH3), rn);
XOR(32, R(RSCRATCH3), op2);
break;
case 2: // CMP
if (rn.IsImm())
{
MOV(32, R(RSCRATCH3), rn);
rn = R(RSCRATCH3);
}
CMP(32, rn, op2);
break;
case 3: // CMN
MOV(32, R(RSCRATCH3), rn);
ADD(32, R(RSCRATCH3), op2);
break;
}
Comp_RetriveFlags(op == 2, op >= 2, carryUsed);
}
// also calculates cycles
OpArg Compiler::A_Comp_GetALUOp2(bool S, bool& carryUsed)
{
if (CurInstr.Instr & (1 << 25))
{
Comp_AddCycles_C();
carryUsed = false;
return Imm32(ROR(CurInstr.Instr & 0xFF, (CurInstr.Instr >> 7) & 0x1E));
}
else
{
int op = (CurInstr.Instr >> 5) & 0x3;
if (CurInstr.Instr & (1 << 4))
{
Comp_AddCycles_CI(1);
OpArg rm = MapReg(CurInstr.A_Reg(0));
if (rm.IsImm() && CurInstr.A_Reg(0) == 15)
rm = Imm32(rm.Imm32() + 4);
return Comp_RegShiftReg(op, MapReg(CurInstr.A_Reg(8)), rm, S, carryUsed);
}
else
{
Comp_AddCycles_C();
return Comp_RegShiftImm(op, (CurInstr.Instr >> 7) & 0x1F,
MapReg(CurInstr.A_Reg(0)), S, carryUsed);
}
}
}
void Compiler::A_Comp_CmpOp()
{
u32 op = (CurInstr.Instr >> 21) & 0xF;
bool carryUsed;
OpArg rn = MapReg(CurInstr.A_Reg(16));
OpArg op2 = A_Comp_GetALUOp2((1 << op) & 0xF303, carryUsed);
Comp_CmpOp(op - 0x8, rn, op2, carryUsed);
}
void Compiler::A_Comp_Arith()
{
bool S = CurInstr.Instr & (1 << 20);
u32 op = (CurInstr.Instr >> 21) & 0xF;
bool carryUsed;
OpArg rn = MapReg(CurInstr.A_Reg(16));
OpArg rd = MapReg(CurInstr.A_Reg(12));
OpArg op2 = A_Comp_GetALUOp2(S && (1 << op) & 0xF303, carryUsed);
u32 sFlag = S ? opSetsFlags : 0;
switch (op)
{
case 0x0: // AND
Comp_ArithTriOp(AND, rd, rn, op2, carryUsed, opSymmetric|sFlag);
break;
case 0x1: // EOR
Comp_ArithTriOp(XOR, rd, rn, op2, carryUsed, opSymmetric|sFlag);
break;
case 0x2: // SUB
Comp_ArithTriOp(SUB, rd, rn, op2, carryUsed, sFlag|opRetriveCV|opInvertCarry);
break;
case 0x3: // RSB
if (op2.IsZero())
{
if (rd != rn)
MOV(32, rd, rn);
NEG(32, rd);
if (S)
Comp_RetriveFlags(true, true, false);
}
else
Comp_ArithTriOpReverse(SUB, rd, rn, op2, carryUsed, sFlag|opRetriveCV|opInvertCarry);
break;
case 0x4: // ADD
Comp_ArithTriOp(ADD, rd, rn, op2, carryUsed, opSymmetric|sFlag|opRetriveCV);
break;
case 0x5: // ADC
Comp_ArithTriOp(ADC, rd, rn, op2, carryUsed, opSymmetric|sFlag|opRetriveCV|opSyncCarry);
break;
case 0x6: // SBC
Comp_ArithTriOp(SBB, rd, rn, op2, carryUsed, opSymmetric|sFlag|opRetriveCV|opSyncCarry|opInvertCarry);
break;
case 0x7: // RSC
Comp_ArithTriOpReverse(SBB, rd, rn, op2, carryUsed, sFlag|opRetriveCV|opInvertCarry|opSyncCarry);
break;
case 0xC: // ORR
Comp_ArithTriOp(OR, rd, rn, op2, carryUsed, opSymmetric|sFlag);
break;
case 0xE: // BIC
Comp_ArithTriOp(AND, rd, rn, op2, carryUsed, sFlag|opSymmetric|opInvertOp2);
break;
default:
assert("unimplemented");
}
if (CurInstr.A_Reg(12) == 15)
Comp_JumpTo(rd.GetSimpleReg(), S);
}
void Compiler::A_Comp_MovOp()
{
bool carryUsed;
bool S = CurInstr.Instr & (1 << 20);
OpArg op2 = A_Comp_GetALUOp2(S, carryUsed);
OpArg rd = MapReg(CurInstr.A_Reg(12));
if (rd != op2)
MOV(32, rd, op2);
if (((CurInstr.Instr >> 21) & 0xF) == 0xF)
NOT(32, rd);
if (S)
{
TEST(32, rd, rd);
Comp_RetriveFlags(false, false, carryUsed);
}
if (CurInstr.A_Reg(12) == 15)
Comp_JumpTo(rd.GetSimpleReg(), S);
}
void Compiler::A_Comp_CLZ()
{
OpArg rd = MapReg(CurInstr.A_Reg(12));
OpArg rm = MapReg(CurInstr.A_Reg(0));
MOV(32, R(RSCRATCH), Imm32(32));
TEST(32, rm, rm);
FixupBranch skipZero = J_CC(CC_Z);
BSR(32, RSCRATCH, rm);
XOR(32, R(RSCRATCH), Imm8(0x1F)); // 31 - RSCRATCH
SetJumpTarget(skipZero);
MOV(32, rd, R(RSCRATCH));
}
void Compiler::Comp_MulOp(bool S, bool add, Gen::OpArg rd, Gen::OpArg rm, Gen::OpArg rs, Gen::OpArg rn)
{
if (Num == 0)
Comp_AddCycles_CI(S ? 3 : 1);
else
{
XOR(32, R(RSCRATCH), R(RSCRATCH));
MOV(32, R(RSCRATCH3), rs);
TEST(32, R(RSCRATCH3), R(RSCRATCH3));
FixupBranch zeroBSR = J_CC(CC_Z);
BSR(32, RSCRATCH2, R(RSCRATCH3));
NOT(32, R(RSCRATCH3));
BSR(32, RSCRATCH, R(RSCRATCH3));
CMP(32, R(RSCRATCH2), R(RSCRATCH));
CMOVcc(32, RSCRATCH, R(RSCRATCH2), CC_L);
SHR(32, R(RSCRATCH), Imm8(3));
SetJumpTarget(zeroBSR); // fortunately that's even right
Comp_AddCycles_CI(RSCRATCH, add ? 2 : 1);
}
static_assert(EAX == RSCRATCH);
MOV(32, R(RSCRATCH), rm);
if (add)
{
IMUL(32, RSCRATCH, rs);
LEA(32, rd.GetSimpleReg(), MRegSum(RSCRATCH, rn.GetSimpleReg()));
TEST(32, rd, rd);
}
else
{
IMUL(32, RSCRATCH, rs);
MOV(32, rd, R(RSCRATCH));
TEST(32, R(RSCRATCH), R(RSCRATCH));
}
if (S)
Comp_RetriveFlags(false, false, false);
}
void Compiler::A_Comp_MUL_MLA()
{
bool S = CurInstr.Instr & (1 << 20);
bool add = CurInstr.Instr & (1 << 21);
OpArg rd = MapReg(CurInstr.A_Reg(16));
OpArg rm = MapReg(CurInstr.A_Reg(0));
OpArg rs = MapReg(CurInstr.A_Reg(8));
OpArg rn;
if (add)
rn = MapReg(CurInstr.A_Reg(12));
Comp_MulOp(S, add, rd, rm, rs, rn);
}
void Compiler::A_Comp_SMULL_SMLAL()
{
bool S = CurInstr.Instr & (1 << 20);
bool add = CurInstr.Instr & (1 << 21);
OpArg rd = MapReg(CurInstr.A_Reg(16));
OpArg rm = MapReg(CurInstr.A_Reg(0));
OpArg rs = MapReg(CurInstr.A_Reg(8));
OpArg rn = MapReg(CurInstr.A_Reg(12));
if (Num == 0)
Comp_AddCycles_CI(S ? 3 : 1);
else
{
XOR(32, R(RSCRATCH), R(RSCRATCH));
MOV(32, R(RSCRATCH3), rs);
TEST(32, R(RSCRATCH3), R(RSCRATCH3));
FixupBranch zeroBSR = J_CC(CC_Z);
BSR(32, RSCRATCH2, R(RSCRATCH3));
NOT(32, R(RSCRATCH3));
BSR(32, RSCRATCH, R(RSCRATCH3));
CMP(32, R(RSCRATCH2), R(RSCRATCH));
CMOVcc(32, RSCRATCH, R(RSCRATCH2), CC_L);
SHR(32, R(RSCRATCH), Imm8(3));
SetJumpTarget(zeroBSR); // fortunately that's even right
Comp_AddCycles_CI(RSCRATCH, 2);
}
MOVSX(64, 32, RSCRATCH2, rm);
MOVSX(64, 32, RSCRATCH3, rs);
if (add)
{
MOV(32, R(RSCRATCH), rd);
SHL(64, R(RSCRATCH), Imm8(32));
OR(64, R(RSCRATCH), rn);
IMUL(64, RSCRATCH2, R(RSCRATCH3));
ADD(64, R(RSCRATCH2), R(RSCRATCH));
}
else
{
IMUL(64, RSCRATCH2, R(RSCRATCH3));
if (S)
TEST(64, R(RSCRATCH2), R(RSCRATCH2));
}
if (S)
Comp_RetriveFlags(false, false, false);
MOV(32, rn, R(RSCRATCH2));
SHR(64, R(RSCRATCH2), Imm8(32));
MOV(32, rd, R(RSCRATCH2));
}
void Compiler::Comp_RetriveFlags(bool sign, bool retriveCV, bool carryUsed)
{
CPSRDirty = true;
bool carryOnly = !retriveCV && carryUsed;
if (retriveCV)
{
SETcc(CC_O, R(RSCRATCH));
SETcc(sign ? CC_NC : CC_C, R(RSCRATCH3));
LEA(32, RSCRATCH2, MComplex(RSCRATCH, RSCRATCH3, SCALE_2, 0));
}
SETcc(CC_S, R(RSCRATCH));
SETcc(CC_Z, R(RSCRATCH3));
LEA(32, RSCRATCH, MComplex(RSCRATCH3, RSCRATCH, SCALE_2, 0));
int shiftAmount = 30;
if (retriveCV || carryUsed)
{
LEA(32, RSCRATCH, MComplex(RSCRATCH2, RSCRATCH, carryOnly ? SCALE_2 : SCALE_4, 0));
shiftAmount = carryOnly ? 29 : 28;
}
SHL(32, R(RSCRATCH), Imm8(shiftAmount));
AND(32, R(RCPSR), Imm32(0x3FFFFFFF & ~(carryUsed << 29) & ~((retriveCV ? 3 : 0) << 28)));
OR(32, R(RCPSR), R(RSCRATCH));
}
// always uses RSCRATCH, RSCRATCH2 only if S == true
OpArg Compiler::Comp_RegShiftReg(int op, Gen::OpArg rs, Gen::OpArg rm, bool S, bool& carryUsed)
{
carryUsed = S;
if (S)
{
XOR(32, R(RSCRATCH2), R(RSCRATCH2));
TEST(32, R(RCPSR), Imm32(1 << 29));
SETcc(CC_NZ, R(RSCRATCH2));
}
MOV(32, R(RSCRATCH), rm);
static_assert(RSCRATCH3 == ECX);
MOV(32, R(ECX), rs);
AND(32, R(ECX), Imm32(0xFF));
FixupBranch zero = J_CC(CC_Z);
if (op < 3)
{
void (Compiler::*shiftOp)(int, const OpArg&, const OpArg&) = NULL;
if (op == 0)
shiftOp = SHL;
else if (op == 1)
shiftOp = SHR;
else if (op == 2)
shiftOp = SAR;
CMP(32, R(ECX), Imm8(32));
FixupBranch lt32 = J_CC(CC_L);
FixupBranch done1;
if (op < 2)
{
FixupBranch eq32 = J_CC(CC_E);
XOR(32, R(RSCRATCH), R(RSCRATCH));
if (S)
XOR(32, R(RSCRATCH2), R(RSCRATCH2));
done1 = J();
SetJumpTarget(eq32);
}
(this->*shiftOp)(32, R(RSCRATCH), Imm8(31));
(this->*shiftOp)(32, R(RSCRATCH), Imm8(1));
if (S)
SETcc(CC_C, R(RSCRATCH2));
FixupBranch done2 = J();
SetJumpTarget(lt32);
(this->*shiftOp)(32, R(RSCRATCH), R(ECX));
if (S)
SETcc(CC_C, R(RSCRATCH2));
if (op < 2)
SetJumpTarget(done1);
SetJumpTarget(done2);
}
else if (op == 3)
{
if (S)
BT(32, R(RSCRATCH), Imm8(31));
ROR_(32, R(RSCRATCH), R(ECX));
if (S)
SETcc(CC_C, R(RSCRATCH2));
}
SetJumpTarget(zero);
return R(RSCRATCH);
}
// may uses RSCRATCH for op2 and RSCRATCH2 for the carryValue
OpArg Compiler::Comp_RegShiftImm(int op, int amount, OpArg rm, bool S, bool& carryUsed)
{
carryUsed = true;
switch (op)
{
case 0: // LSL
if (amount > 0)
{
MOV(32, R(RSCRATCH), rm);
SHL(32, R(RSCRATCH), Imm8(amount));
if (S)
SETcc(CC_C, R(RSCRATCH2));
return R(RSCRATCH);
}
else
{
carryUsed = false;
return rm;
}
case 1: // LSR
if (amount > 0)
{
MOV(32, R(RSCRATCH), rm);
SHR(32, R(RSCRATCH), Imm8(amount));
if (S)
SETcc(CC_C, R(RSCRATCH2));
return R(RSCRATCH);
}
else
{
if (S)
{
MOV(32, R(RSCRATCH2), rm);
SHR(32, R(RSCRATCH2), Imm8(31));
}
return Imm32(0);
}
case 2: // ASR
MOV(32, R(RSCRATCH), rm);
SAR(32, R(RSCRATCH), Imm8(amount ? amount : 31));
if (S)
{
if (amount == 0)
BT(32, rm, Imm8(31));
SETcc(CC_C, R(RSCRATCH2));
}
return R(RSCRATCH);
case 3: // ROR
MOV(32, R(RSCRATCH), rm);
if (amount > 0)
ROR_(32, R(RSCRATCH), Imm8(amount));
else
{
BT(32, R(RCPSR), Imm8(29));
RCR(32, R(RSCRATCH), Imm8(1));
}
if (S)
SETcc(CC_C, R(RSCRATCH2));
return R(RSCRATCH);
}
assert(false);
}
void Compiler::T_Comp_ShiftImm()
{
OpArg rd = MapReg(CurInstr.T_Reg(0));
OpArg rs = MapReg(CurInstr.T_Reg(3));
int op = (CurInstr.Instr >> 11) & 0x3;
int amount = (CurInstr.Instr >> 6) & 0x1F;
Comp_AddCycles_C();
bool carryUsed;
OpArg shifted = Comp_RegShiftImm(op, amount, rs, true, carryUsed);
if (shifted != rd)
MOV(32, rd, shifted);
TEST(32, rd, rd);
Comp_RetriveFlags(false, false, carryUsed);
}
void Compiler::T_Comp_AddSub_()
{
OpArg rd = MapReg(CurInstr.T_Reg(0));
OpArg rs = MapReg(CurInstr.T_Reg(3));
int op = (CurInstr.Instr >> 9) & 0x3;
OpArg rn = op >= 2 ? Imm32((CurInstr.Instr >> 6) & 0x7) : MapReg(CurInstr.T_Reg(6));
Comp_AddCycles_C();
if (op & 1)
Comp_ArithTriOp(SUB, rd, rs, rn, false, opSetsFlags|opInvertCarry|opRetriveCV);
else
Comp_ArithTriOp(ADD, rd, rs, rn, false, opSetsFlags|opSymmetric|opRetriveCV);
}
void Compiler::T_Comp_ALU_Imm8()
{
OpArg rd = MapReg(CurInstr.T_Reg(8));
u32 op = (CurInstr.Instr >> 11) & 0x3;
OpArg imm = Imm32(CurInstr.Instr & 0xFF);
Comp_AddCycles_C();
switch (op)
{
case 0x0:
MOV(32, rd, imm);
TEST(32, rd, rd);
Comp_RetriveFlags(false, false, false);
return;
case 0x1:
Comp_CmpOp(2, rd, imm, false);
return;
case 0x2:
Comp_ArithTriOp(ADD, rd, rd, imm, false, opSetsFlags|opSymmetric|opRetriveCV);
return;
case 0x3:
Comp_ArithTriOp(SUB, rd, rd, imm, false, opSetsFlags|opInvertCarry|opRetriveCV);
return;
}
}
void Compiler::T_Comp_MUL()
{
OpArg rd = MapReg(CurInstr.T_Reg(0));
OpArg rs = MapReg(CurInstr.T_Reg(3));
Comp_MulOp(true, false, rd, rd, rs, Imm8(-1));
}
void Compiler::T_Comp_ALU()
{
OpArg rd = MapReg(CurInstr.T_Reg(0));
OpArg rs = MapReg(CurInstr.T_Reg(3));
u32 op = (CurInstr.Instr >> 6) & 0xF;
if ((op >= 0x2 && op < 0x4) || op == 0x7)
Comp_AddCycles_CI(1);
else
Comp_AddCycles_C();
switch (op)
{
case 0x0: // AND
Comp_ArithTriOp(AND, rd, rd, rs, false, opSetsFlags|opSymmetric);
return;
case 0x1: // EOR
Comp_ArithTriOp(XOR, rd, rd, rs, false, opSetsFlags|opSymmetric);
return;
case 0x2:
case 0x3:
case 0x4:
case 0x7:
{
int shiftOp = op == 0x7 ? 3 : op - 0x2;
bool carryUsed;
OpArg shifted = Comp_RegShiftReg(shiftOp, rs, rd, true, carryUsed);
TEST(32, shifted, shifted);
MOV(32, rd, shifted);
Comp_RetriveFlags(false, false, true);
}
return;
case 0x5: // ADC
Comp_ArithTriOp(ADC, rd, rd, rs, false, opSetsFlags|opSymmetric|opSyncCarry|opRetriveCV);
return;
case 0x6: // SBC
Comp_ArithTriOp(SBB, rd, rd, rs, false, opSetsFlags|opSyncCarry|opInvertCarry|opRetriveCV);
return;
case 0x8: // TST
Comp_CmpOp(0, rd, rs, false);
return;
case 0x9: // NEG
if (rd != rs)
MOV(32, rd, rs);
NEG(32, rd);
Comp_RetriveFlags(true, true, false);
return;
case 0xA: // CMP
Comp_CmpOp(2, rd, rs, false);
return;
case 0xB: // CMN
Comp_CmpOp(3, rd, rs, false);
return;
case 0xC: // ORR
Comp_ArithTriOp(OR, rd, rd, rs, false, opSetsFlags|opSymmetric);
return;
case 0xE: // BIC
Comp_ArithTriOp(AND, rd, rd, rs, false, opSetsFlags|opSymmetric|opInvertOp2);
return;
case 0xF: // MVN
if (rd != rs)
MOV(32, rd, rs);
NOT(32, rd);
Comp_RetriveFlags(false, false, false);
return;
default:
break;
}
}
void Compiler::T_Comp_ALU_HiReg()
{
u32 rd = ((CurInstr.Instr & 0x7) | ((CurInstr.Instr >> 4) & 0x8));
OpArg rdMapped = MapReg(rd);
OpArg rs = MapReg((CurInstr.Instr >> 3) & 0xF);
u32 op = (CurInstr.Instr >> 8) & 0x3;
Comp_AddCycles_C();
switch (op)
{
case 0x0: // ADD
Comp_ArithTriOp(ADD, rdMapped, rdMapped, rs, false, opSymmetric|opRetriveCV);
break;
case 0x1: // CMP
Comp_CmpOp(2, rdMapped, rs, false);
return; // this is on purpose
case 0x2: // MOV
if (rdMapped != rs)
MOV(32, rdMapped, rs);
TEST(32, rdMapped, rdMapped);
Comp_RetriveFlags(false, false, false);
break;
}
if (rd == 15)
{
OR(32, rdMapped, Imm8(1));
Comp_JumpTo(rdMapped.GetSimpleReg());
}
}
void Compiler::T_Comp_AddSP()
{
Comp_AddCycles_C();
OpArg sp = MapReg(13);
OpArg offset = Imm32((CurInstr.Instr & 0x7F) << 2);
if (CurInstr.Instr & (1 << 7))
SUB(32, sp, offset);
else
ADD(32, sp, offset);
}
void Compiler::T_Comp_RelAddr()
{
Comp_AddCycles_C();
OpArg rd = MapReg(CurInstr.T_Reg(8));
u32 offset = (CurInstr.Instr & 0xFF) << 2;
if (CurInstr.Instr & (1 << 11))
{
OpArg sp = MapReg(13);
LEA(32, rd.GetSimpleReg(), MDisp(sp.GetSimpleReg(), offset));
}
else
MOV(32, rd, Imm32((R15 & ~2) + offset));
}
}