Files
melonDS/src/SPI.cpp
Jesse Talavera-Greenberg 5bfe51e670 Refactor the core's handling of firmware and BIOS images to rely less on the file system (#1826)
* Introduce firmware-related structs

* Fix some indents

* Move the generated firmware identifier to a constant

* Document the WifiAccessPoint constructors

* Add some constants

* Remove a stray comment

* Implement Firmware::UserData

* Add Firmware::Mask

* Document Firmware::Buffer

* Add a Firmware constructor that uses a FileHandle

* Set the default username in UserData

* Update the UserData checksum

* Forgot to include Platform.h

* Remove some redundant assignments in the default Firmware constructor

* const-ify CRC16

* Replace the plain Firmware buffer with a Firmware object

- Remove some functions that were reimplemented in the Firmware constructors

* Fix some crashes due to undefined behavior

* Fix the user data initialization

- Initialize both user data objects to default
- Set both user data objects to the same touch screen calibration

* Follow the DS logic in determining which user data section is current

* Remove an unneeded include

* Remove another unneeded include

* Initialize FirmwareMask in Firmware::Firmware

* Use the DEFAULT_SSID constant

* Add SPI_Firmware::InstallFirmware and SPI_Firmware::RemoveFirmware

* Move a logging call to after the file is written

* Add a SaveManager for the firmware

* Touch up the SPI_Firmware::Firmware declaration

* Move all firmware loading and customization to the frontend

* Call Platform::WriteFirmware when it's time to write the firmware back to disk

* Fix some missing stuff

* Remove the Get* functions from SPI_Firmware in favor of GetFirmware()

* Implement SPI_Firmware::DeInit in terms of RemoveFirmware

* Add Firmware::UpdateChecksums

* Fix an incorrect length

* Update all checksums in the firmware after setting touch screen calibration data

* Use the Firmware object's Position methods

* Remove register fields from the Firmware object

* Install the firmware before seeing if direct boot is necessary

* Install the firmware before calling NDS::Reset in LoadROM

* Slight cleanup in ROMManager

* Fix the default access point name

* Shorten the various getters in Firmware

* Add qualifiers for certain uses of firmware types

- GCC can get picky if -fpermissive isn't defined

* Add an InstallFirmware overload that takes a unique_ptr

* Log when firmware is added or removed

* Don't clear the firmware in SPI_Firmware::Init

- The original code didn't, it just set the pointer to nullptr

* Fix a typo

* Write back the full firmware if it's not generated

* Move the FreeBIOS to an external file

* Load wfcsettings.bin into the correct part of the generated firmware blob

* Load BIOS files in the frontend, not in the core

* Fix logging the firmware ID

* Add some utility functions

* Mark Firmware's constructors as explicit

* Remove obsolete ConfigEntry values

* Include <locale> explicitly in ROMManager

* Fix up some includes

* Add Firmware::IsBootable()

* Add a newline to a log entry

- Whoops

* Log the number of bytes written out in SaveManager

* Mark FirmwareHeader's constructor as explicit

* Clean up GenerateDefaultFirmware and LoadFirmwareFromFile

- Now they return a pair instead of two by-ref values

* Refactor SaveManager a little bit

- Manage its buffers as unique_ptrs to mitigate leaks
- Reallocate the internal buffer if SetPath is asked to reload the file (and the new length is different)

* Remove some stray parens

* Fix some firmware-related bugs I introduced

- Firmware settings are now properly saved to disk (beforehand I misunderstood when the firmware blob was written)
- Firmware is no longer overwritten by contents of wfcsettings.bin

* Slight cleanup
2023-09-18 21:09:11 +02:00

732 lines
16 KiB
C++

/*
Copyright 2016-2022 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <memory>
#include <utility>
#include "NDS.h"
#include "DSi.h"
#include "SPI.h"
#include "DSi_SPI_TSC.h"
#include "Platform.h"
using namespace Platform;
namespace SPI_Firmware
{
std::unique_ptr<Firmware> Firmware;
u32 Hold;
u8 CurCmd;
u32 DataPos;
u8 Data;
u8 StatusReg;
u32 Addr;
u16 CRC16(const u8* data, u32 len, u32 start)
{
constexpr u16 blarg[8] = {0xC0C1, 0xC181, 0xC301, 0xC601, 0xCC01, 0xD801, 0xF001, 0xA001};
for (u32 i = 0; i < len; i++)
{
start ^= data[i];
for (int j = 0; j < 8; j++)
{
if (start & 0x1)
{
start >>= 1;
start ^= (blarg[j] << (7-j));
}
else
start >>= 1;
}
}
return start & 0xFFFF;
}
bool VerifyCRC16(u32 start, u32 offset, u32 len, u32 crcoffset)
{
u16 crc_stored = *(u16*)&Firmware->Buffer()[crcoffset];
u16 crc_calced = CRC16(&Firmware->Buffer()[offset], len, start);
return (crc_stored == crc_calced);
}
bool Init()
{
return true;
}
void DeInit()
{
RemoveFirmware();
}
u32 FixFirmwareLength(u32 originalLength)
{
if (originalLength != 0x20000 && originalLength != 0x40000 && originalLength != 0x80000)
{
Log(LogLevel::Warn, "Bad firmware size %d, ", originalLength);
// pick the nearest power-of-two length
originalLength |= (originalLength >> 1);
originalLength |= (originalLength >> 2);
originalLength |= (originalLength >> 4);
originalLength |= (originalLength >> 8);
originalLength |= (originalLength >> 16);
originalLength++;
// ensure it's a sane length
if (originalLength > 0x80000) originalLength = 0x80000;
else if (originalLength < 0x20000) originalLength = 0x20000;
Log(LogLevel::Debug, "assuming %d\n", originalLength);
}
return originalLength;
}
void Reset()
{
if (!Firmware)
{
Log(LogLevel::Warn, "SPI firmware: no firmware loaded! Using default\n");
Firmware = std::make_unique<class Firmware>(NDS::ConsoleType);
}
// fix touchscreen coords
for (UserData& u : Firmware->UserData())
{
u.TouchCalibrationADC1[0] = 0;
u.TouchCalibrationADC1[1] = 0;
u.TouchCalibrationPixel1[0] = 0;
u.TouchCalibrationPixel1[1] = 0;
u.TouchCalibrationADC2[0] = 255<<4;
u.TouchCalibrationADC2[1] = 191<<4;
u.TouchCalibrationPixel2[0] = 255;
u.TouchCalibrationPixel2[1] = 191;
}
Firmware->UpdateChecksums();
// disable autoboot
//Firmware[userdata+0x64] &= 0xBF;
MacAddress mac = Firmware->Header().MacAddress;
Log(LogLevel::Info, "MAC: %02X:%02X:%02X:%02X:%02X:%02X\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
// verify shit
u32 mask = Firmware->Mask();
Log(LogLevel::Debug, "FW: WIFI CRC16 = %s\n", VerifyCRC16(0x0000, 0x2C, *(u16*)&Firmware->Buffer()[0x2C], 0x2A)?"GOOD":"BAD");
Log(LogLevel::Debug, "FW: AP1 CRC16 = %s\n", VerifyCRC16(0x0000, 0x7FA00&mask, 0xFE, 0x7FAFE&mask)?"GOOD":"BAD");
Log(LogLevel::Debug, "FW: AP2 CRC16 = %s\n", VerifyCRC16(0x0000, 0x7FB00&mask, 0xFE, 0x7FBFE&mask)?"GOOD":"BAD");
Log(LogLevel::Debug, "FW: AP3 CRC16 = %s\n", VerifyCRC16(0x0000, 0x7FC00&mask, 0xFE, 0x7FCFE&mask)?"GOOD":"BAD");
Log(LogLevel::Debug, "FW: USER0 CRC16 = %s\n", VerifyCRC16(0xFFFF, 0x7FE00&mask, 0x70, 0x7FE72&mask)?"GOOD":"BAD");
Log(LogLevel::Debug, "FW: USER1 CRC16 = %s\n", VerifyCRC16(0xFFFF, 0x7FF00&mask, 0x70, 0x7FF72&mask)?"GOOD":"BAD");
Hold = 0;
CurCmd = 0;
Data = 0;
StatusReg = 0x00;
}
void DoSavestate(Savestate* file)
{
file->Section("SPFW");
// CHECKME/TODO: trust the firmware to stay the same?????
// embedding the whole firmware in the savestate would be derpo tho??
file->Var32(&Hold);
file->Var8(&CurCmd);
file->Var32(&DataPos);
file->Var8(&Data);
file->Var8(&StatusReg);
file->Var32(&Addr);
}
void SetupDirectBoot(bool dsi)
{
const FirmwareHeader& header = Firmware->Header();
const UserData& userdata = Firmware->EffectiveUserData();
if (dsi)
{
for (u32 i = 0; i < 6; i += 2)
DSi::ARM9Write16(0x02FFFCF4, *(u16*)&header.MacAddress[i]); // MAC address
// checkme
DSi::ARM9Write16(0x02FFFCFA, header.EnabledChannels); // enabled channels
for (u32 i = 0; i < 0x70; i += 4)
DSi::ARM9Write32(0x02FFFC80+i, *(u32*)&userdata.Bytes[i]);
}
else
{
NDS::ARM9Write32(0x027FF864, 0);
NDS::ARM9Write32(0x027FF868, header.UserSettingsOffset << 3); // user settings offset
NDS::ARM9Write16(0x027FF874, header.DataGfxChecksum); // CRC16 for data/gfx
NDS::ARM9Write16(0x027FF876, header.GUIWifiCodeChecksum); // CRC16 for GUI/wifi code
for (u32 i = 0; i < 0x70; i += 4)
NDS::ARM9Write32(0x027FFC80+i, *(u32*)&userdata.Bytes[i]);
}
}
const class Firmware* GetFirmware()
{
return Firmware.get();
}
bool IsLoadedFirmwareBuiltIn()
{
return Firmware->Header().Identifier == GENERATED_FIRMWARE_IDENTIFIER;
}
bool InstallFirmware(class Firmware&& firmware)
{
if (!firmware.Buffer())
{
Log(LogLevel::Error, "SPI firmware: firmware buffer is null!\n");
return false;
}
Firmware = std::make_unique<class Firmware>(std::move(firmware));
FirmwareIdentifier id = Firmware->Header().Identifier;
Log(LogLevel::Debug, "Installed firmware (Identifier: %c%c%c%c)\n", id[0], id[1], id[2], id[3]);
return true;
}
bool InstallFirmware(std::unique_ptr<class Firmware>&& firmware)
{
if (!firmware)
{
Log(LogLevel::Error, "SPI firmware: firmware is null!\n");
return false;
}
if (!firmware->Buffer())
{
Log(LogLevel::Error, "SPI firmware: firmware buffer is null!\n");
return false;
}
Firmware = std::move(firmware);
FirmwareIdentifier id = Firmware->Header().Identifier;
Log(LogLevel::Debug, "Installed firmware (Identifier: %c%c%c%c)\n", id[0], id[1], id[2], id[3]);
return true;
}
void RemoveFirmware()
{
Firmware.reset();
Log(LogLevel::Debug, "Removed installed firmware (if any)\n");
}
u8 Read()
{
return Data;
}
void Write(u8 val, u32 hold)
{
if (!hold)
{
if (!Hold) // commands with no paramters
CurCmd = val;
Hold = 0;
}
if (hold && (!Hold))
{
CurCmd = val;
Hold = 1;
Data = 0;
DataPos = 1;
Addr = 0;
return;
}
switch (CurCmd)
{
case 0x03: // read
{
if (DataPos < 4)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
Data = Firmware->Buffer()[Addr & Firmware->Mask()];
Addr++;
}
DataPos++;
}
break;
case 0x04: // write disable
StatusReg &= ~(1<<1);
Data = 0;
break;
case 0x05: // read status reg
Data = StatusReg;
break;
case 0x06: // write enable
StatusReg |= (1<<1);
Data = 0;
break;
case 0x0A: // write
{
// TODO: what happens if you write too many bytes? (max 256, they say)
if (DataPos < 4)
{ // If we're in the middle of writing the address...
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
Firmware->Buffer()[Addr & Firmware->Mask()] = val;
Data = val;
Addr++;
}
DataPos++;
}
break;
case 0x9F: // read JEDEC ID
{
switch (DataPos)
{
case 1: Data = 0x20; break;
case 2: Data = 0x40; break;
case 3: Data = 0x12; break;
default: Data = 0; break;
}
DataPos++;
}
break;
default:
Log(LogLevel::Warn, "unknown firmware SPI command %02X\n", CurCmd);
Data = 0xFF;
break;
}
if (!hold && (CurCmd == 0x02 || CurCmd == 0x0A))
{ // If the SPI firmware chip just finished a write...
// We only notify the frontend of changes to the Wi-fi/userdata settings region
// (although it might still decide to flush the whole thing)
u32 wifioffset = Firmware->WifiAccessPointOffset();
// Request that the start of the Wi-fi/userdata settings region
// through the end of the firmware blob be flushed to disk
Platform::WriteFirmware(*Firmware, wifioffset, Firmware->Length() - wifioffset);
}
}
}
namespace SPI_Powerman
{
u32 Hold;
u32 DataPos;
u8 Index;
u8 Data;
u8 Registers[8];
u8 RegMasks[8];
bool Init()
{
return true;
}
void DeInit()
{
}
void Reset()
{
Hold = 0;
Index = 0;
Data = 0;
memset(Registers, 0, sizeof(Registers));
memset(RegMasks, 0, sizeof(RegMasks));
Registers[4] = 0x40;
RegMasks[0] = 0x7F;
RegMasks[1] = 0x00;
RegMasks[2] = 0x01;
RegMasks[3] = 0x03;
RegMasks[4] = 0x0F;
}
bool GetBatteryLevelOkay() { return !Registers[1]; }
void SetBatteryLevelOkay(bool okay) { Registers[1] = okay ? 0x00 : 0x01; }
void DoSavestate(Savestate* file)
{
file->Section("SPPW");
file->Var32(&Hold);
file->Var32(&DataPos);
file->Var8(&Index);
file->Var8(&Data);
file->VarArray(Registers, 8);
file->VarArray(RegMasks, 8); // is that needed??
}
u8 Read()
{
return Data;
}
void Write(u8 val, u32 hold)
{
if (!hold)
{
Hold = 0;
}
if (hold && (!Hold))
{
Index = val;
Hold = 1;
Data = 0;
DataPos = 1;
return;
}
if (DataPos == 1)
{
// TODO: DSi-specific registers in DSi mode
u32 regid = Index & 0x07;
if (Index & 0x80)
{
Data = Registers[regid];
}
else
{
Registers[regid] = (Registers[regid] & ~RegMasks[regid]) | (val & RegMasks[regid]);
switch (regid)
{
case 0:
if (val & 0x40) NDS::Stop(StopReason::PowerOff); // shutdown
//printf("power %02X\n", val);
break;
case 4:
//printf("brightness %02X\n", val);
break;
}
}
}
else
Data = 0;
}
}
namespace SPI_TSC
{
u32 DataPos;
u8 ControlByte;
u8 Data;
u16 ConvResult;
u16 TouchX, TouchY;
s16 MicBuffer[1024];
int MicBufferLen;
bool Init()
{
return true;
}
void DeInit()
{
}
void Reset()
{
ControlByte = 0;
Data = 0;
ConvResult = 0;
MicBufferLen = 0;
}
void DoSavestate(Savestate* file)
{
file->Section("SPTS");
file->Var32(&DataPos);
file->Var8(&ControlByte);
file->Var8(&Data);
file->Var16(&ConvResult);
}
void SetTouchCoords(u16 x, u16 y)
{
// scr.x = (adc.x-adc.x1) * (scr.x2-scr.x1) / (adc.x2-adc.x1) + (scr.x1-1)
// scr.y = (adc.y-adc.y1) * (scr.y2-scr.y1) / (adc.y2-adc.y1) + (scr.y1-1)
// adc.x = ((scr.x * ((adc.x2-adc.x1) + (scr.x1-1))) / (scr.x2-scr.x1)) + adc.x1
// adc.y = ((scr.y * ((adc.y2-adc.y1) + (scr.y1-1))) / (scr.y2-scr.y1)) + adc.y1
TouchX = x;
TouchY = y;
if (y == 0xFFF) return;
TouchX <<= 4;
TouchY <<= 4;
}
void MicInputFrame(s16* data, int samples)
{
if (!data)
{
MicBufferLen = 0;
return;
}
if (samples > 1024) samples = 1024;
memcpy(MicBuffer, data, samples*sizeof(s16));
MicBufferLen = samples;
}
u8 Read()
{
return Data;
}
void Write(u8 val, u32 hold)
{
if (DataPos == 1)
Data = (ConvResult >> 5) & 0xFF;
else if (DataPos == 2)
Data = (ConvResult << 3) & 0xFF;
else
Data = 0;
if (val & 0x80)
{
ControlByte = val;
DataPos = 1;
switch (ControlByte & 0x70)
{
case 0x10: ConvResult = TouchY; break;
case 0x50: ConvResult = TouchX; break;
case 0x60:
{
if (MicBufferLen == 0)
ConvResult = 0x800;
else
{
// 560190 cycles per frame
u32 cyclepos = (u32)NDS::GetSysClockCycles(2);
u32 samplepos = (cyclepos * MicBufferLen) / 560190;
if (samplepos >= MicBufferLen) samplepos = MicBufferLen-1;
s16 sample = MicBuffer[samplepos];
// make it louder
//if (sample > 0x3FFF) sample = 0x7FFF;
//else if (sample < -0x4000) sample = -0x8000;
//else sample <<= 1;
// make it unsigned 12-bit
sample ^= 0x8000;
ConvResult = sample >> 4;
}
}
break;
default: ConvResult = 0xFFF; break;
}
if (ControlByte & 0x08)
ConvResult &= 0x0FF0; // checkme
}
else
DataPos++;
}
}
namespace SPI
{
u16 Cnt;
u32 CurDevice; // remove me
bool Init()
{
if (!SPI_Firmware::Init()) return false;
if (!SPI_Powerman::Init()) return false;
if (!SPI_TSC::Init()) return false;
if (!DSi_SPI_TSC::Init()) return false;
return true;
}
void DeInit()
{
SPI_Firmware::DeInit();
SPI_Powerman::DeInit();
SPI_TSC::DeInit();
DSi_SPI_TSC::DeInit();
}
void Reset()
{
Cnt = 0;
SPI_Firmware::Reset();
SPI_Powerman::Reset();
SPI_TSC::Reset();
if (NDS::ConsoleType == 1) DSi_SPI_TSC::Reset();
}
void DoSavestate(Savestate* file)
{
file->Section("SPIG");
file->Var16(&Cnt);
file->Var32(&CurDevice);
SPI_Firmware::DoSavestate(file);
SPI_Powerman::DoSavestate(file);
SPI_TSC::DoSavestate(file);
if (NDS::ConsoleType == 1) DSi_SPI_TSC::DoSavestate(file);
}
void WriteCnt(u16 val)
{
// turning it off should clear chipselect
// TODO: confirm on hardware. libnds expects this, though.
if ((Cnt & (1<<15)) && !(val & (1<<15)))
{
switch (Cnt & 0x0300)
{
case 0x0000: SPI_Powerman::Hold = 0; break;
case 0x0100: SPI_Firmware::Hold = 0; break;
case 0x0200:
if (NDS::ConsoleType == 1)
DSi_SPI_TSC::DataPos = 0;
else
SPI_TSC::DataPos = 0;
break;
}
}
// TODO: presumably the transfer speed can be changed during a transfer
// like with the NDSCart SPI interface
Cnt = (Cnt & 0x0080) | (val & 0xCF03);
if (val & 0x0400) Log(LogLevel::Warn, "!! CRAPOED 16BIT SPI MODE\n");
if (Cnt & (1<<7)) Log(LogLevel::Warn, "!! CHANGING SPICNT DURING TRANSFER: %04X\n", val);
}
void TransferDone(u32 param)
{
Cnt &= ~(1<<7);
if (Cnt & (1<<14))
NDS::SetIRQ(1, NDS::IRQ_SPI);
}
u8 ReadData()
{
if (!(Cnt & (1<<15))) return 0;
if (Cnt & (1<<7)) return 0; // checkme
switch (Cnt & 0x0300)
{
case 0x0000: return SPI_Powerman::Read();
case 0x0100: return SPI_Firmware::Read();
case 0x0200:
if (NDS::ConsoleType == 1)
return DSi_SPI_TSC::Read();
else
return SPI_TSC::Read();
default: return 0;
}
}
void WriteData(u8 val)
{
if (!(Cnt & (1<<15))) return;
if (Cnt & (1<<7)) return;
Cnt |= (1<<7);
switch (Cnt & 0x0300)
{
case 0x0000: SPI_Powerman::Write(val, Cnt&(1<<11)); break;
case 0x0100: SPI_Firmware::Write(val, Cnt&(1<<11)); break;
case 0x0200:
if (NDS::ConsoleType == 1)
DSi_SPI_TSC::Write(val, Cnt&(1<<11));
else
SPI_TSC::Write(val, Cnt&(1<<11));
break;
default: Log(LogLevel::Warn, "SPI to unknown device %04X %02X\n", Cnt, val); break;
}
// SPI transfers one bit per cycle -> 8 cycles per byte
u32 delay = 8 * (8 << (Cnt & 0x3));
NDS::ScheduleEvent(NDS::Event_SPITransfer, false, delay, TransferDone, 0);
}
}