Files
melonDS/src/frontend/Util_Video.cpp
2023-07-29 21:27:28 +02:00

554 lines
17 KiB
C++

/*
Copyright 2016-2022 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <cmath>
#include <algorithm>
#include "FrontendUtil.h"
namespace Frontend
{
float TopScreenMtx[6];
float BotScreenMtx[6];
float HybScreenMtx[6];
float TouchMtx[6];
float HybTouchMtx[6];
bool TopEnable;
bool BotEnable;
bool HybEnable;
int HybScreen;
int HybPrevTouchScreen; // 0:unknown, 1:buttom screen, 2:hybrid screen
void M23_Identity(float* m)
{
m[0] = 1; m[1] = 0;
m[2] = 0; m[3] = 1;
m[4] = 0; m[5] = 0;
}
void M23_Scale(float* m, float s)
{
m[0] *= s; m[1] *= s;
m[2] *= s; m[3] *= s;
m[4] *= s; m[5] *= s;
}
void M23_Scale(float* m, float x, float y)
{
m[0] *= x; m[1] *= y;
m[2] *= x; m[3] *= y;
m[4] *= x; m[5] *= y;
}
void M23_RotateFast(float* m, int angle)
{
if (angle == 0) return;
float temp[4]; memcpy(temp, m, sizeof(float)*4);
switch (angle)
{
case 1: // 90
m[0] = temp[2];
m[1] = temp[3];
m[2] = -temp[0];
m[3] = -temp[1];
break;
case 2: // 180
m[0] = -temp[0];
m[1] = -temp[1];
m[2] = -temp[2];
m[3] = -temp[3];
break;
case 3: // 270
m[0] = -temp[2];
m[1] = -temp[3];
m[2] = temp[0];
m[3] = temp[1];
break;
}
}
void M23_Translate(float* m, float tx, float ty)
{
m[4] += tx;
m[5] += ty;
}
void M23_Multiply(float* m, float* _a, float* _b)
{
float a[6]; memcpy(a, _a, 6*sizeof(float));
float b[6]; memcpy(b, _b, 6*sizeof(float));
m[0] = (a[0] * b[0]) + (a[2] * b[1]);
m[1] = (a[1] * b[0]) + (a[3] * b[1]);
m[2] = (a[0] * b[2]) + (a[2] * b[3]);
m[3] = (a[1] * b[2]) + (a[3] * b[3]);
m[4] = (a[0] * b[4]) + (a[2] * b[5]) + a[4];
m[5] = (a[1] * b[4]) + (a[3] * b[5]) + a[5];
}
void M23_Transform(float* m, float& x, float& y)
{
float vx = x;
float vy = y;
x = (vx * m[0]) + (vy * m[2]) + m[4];
y = (vx * m[1]) + (vy * m[3]) + m[5];
}
void SetupScreenLayout(int screenWidth, int screenHeight,
ScreenLayout screenLayout,
ScreenRotation rotation,
ScreenSizing sizing,
int screenGap,
bool integerScale,
bool swapScreens,
float topAspect, float botAspect)
{
HybEnable = screenLayout == 3;
if (HybEnable)
{
screenLayout = screenLayout_Natural;
sizing = screenSizing_Even;
HybScreen = swapScreens ? 1 : 0;
swapScreens = false;
topAspect = botAspect = 1;
HybPrevTouchScreen = 0;
}
float refpoints[6][2] =
{
{0, 0}, {256, 192},
{0, 0}, {256, 192},
{0, 0}, {256, 192}
};
int layout = screenLayout == screenLayout_Natural
? rotation % 2
: screenLayout - 1;
float botScale = 1;
float hybScale = 1;
float botTrans[4] = {0};
float hybTrans[2] = {0};
M23_Identity(TopScreenMtx);
M23_Identity(BotScreenMtx);
M23_Identity(HybScreenMtx);
M23_Translate(TopScreenMtx, -256/2, -192/2);
M23_Translate(BotScreenMtx, -256/2, -192/2);
M23_Scale(TopScreenMtx, topAspect, 1);
M23_Scale(BotScreenMtx, botAspect, 1);
// rotation
{
float rotmtx[6];
M23_Identity(rotmtx);
M23_RotateFast(rotmtx, rotation);
M23_Multiply(TopScreenMtx, rotmtx, TopScreenMtx);
M23_Multiply(BotScreenMtx, rotmtx, BotScreenMtx);
M23_Multiply(HybScreenMtx, rotmtx, HybScreenMtx);
M23_Transform(TopScreenMtx, refpoints[0][0], refpoints[0][1]);
M23_Transform(TopScreenMtx, refpoints[1][0], refpoints[1][1]);
M23_Transform(BotScreenMtx, refpoints[2][0], refpoints[2][1]);
M23_Transform(BotScreenMtx, refpoints[3][0], refpoints[3][1]);
}
int posRefPointOffset = 0;
int posRefPointCount = HybEnable ? 6 : 4;
if (sizing == screenSizing_TopOnly || sizing == screenSizing_BotOnly)
{
float* mtx = sizing == screenSizing_TopOnly ? TopScreenMtx : BotScreenMtx;
int primOffset = sizing == screenSizing_TopOnly ? 0 : 2;
int secOffset = sizing == screenSizing_BotOnly ? 2 : 0;
float hSize = fabsf(refpoints[primOffset][0] - refpoints[primOffset+1][0]);
float vSize = fabsf(refpoints[primOffset][1] - refpoints[primOffset+1][1]);
float scale = std::min(screenWidth / hSize, screenHeight / vSize);
if (integerScale)
scale = floorf(scale);
TopEnable = sizing == screenSizing_TopOnly;
BotEnable = sizing == screenSizing_BotOnly;
botScale = scale;
M23_Scale(mtx, scale);
refpoints[primOffset][0] *= scale;
refpoints[primOffset][1] *= scale;
refpoints[primOffset+1][0] *= scale;
refpoints[primOffset+1][1] *= scale;
posRefPointOffset = primOffset;
posRefPointCount = 2;
}
else
{
TopEnable = BotEnable = true;
// move screens apart
{
int idx = layout == 0 ? 1 : 0;
bool moveV = rotation % 2 == layout;
float offsetBot = (moveV ? 192.0 : 256.0 * botAspect) / 2.0 + screenGap / 2.0;
float offsetTop = -((moveV ? 192.0 : 256.0 * topAspect) / 2.0 + screenGap / 2.0);
if ((rotation == 1 || rotation == 2) ^ swapScreens)
{
offsetTop *= -1;
offsetBot *= -1;
}
M23_Translate(TopScreenMtx, (idx==0)?offsetTop:0, (idx==1)?offsetTop:0);
M23_Translate(BotScreenMtx, (idx==0)?offsetBot:0, (idx==1)?offsetBot:0);
refpoints[0][idx] += offsetTop;
refpoints[1][idx] += offsetTop;
refpoints[2][idx] += offsetBot;
refpoints[3][idx] += offsetBot;
botTrans[idx] = offsetBot;
}
// scale
{
if (sizing == screenSizing_Even)
{
float minX = refpoints[0][0], maxX = minX;
float minY = refpoints[0][1], maxY = minY;
for (int i = 1; i < 4; i++)
{
minX = std::min(minX, refpoints[i][0]);
minY = std::min(minY, refpoints[i][1]);
maxX = std::max(maxX, refpoints[i][0]);
maxY = std::max(maxY, refpoints[i][1]);
}
float hSize = maxX - minX;
float vSize = maxY - minY;
if (HybEnable)
{
hybScale = layout == 0
? (4 * vSize) / (3 * hSize)
: (4 * hSize) / (3 * vSize);
if (layout == 0)
hSize += (vSize * 4) / 3;
else
vSize += (hSize * 4) / 3;
}
// scale evenly
float scale = std::min(screenWidth / hSize, screenHeight / vSize);
if (integerScale)
scale = floor(scale);
hybScale *= scale;
M23_Scale(TopScreenMtx, scale);
M23_Scale(BotScreenMtx, scale);
M23_Scale(HybScreenMtx, hybScale);
for (int i = 0; i < 4; i++)
{
refpoints[i][0] *= scale;
refpoints[i][1] *= scale;
}
botScale = scale;
// move screens aside
if (HybEnable)
{
float hybWidth = layout == 0
? (scale * vSize * 4) / 3
: (scale * hSize * 4) / 3;
if (rotation > screenRot_90Deg)
hybWidth *= -1;
M23_Translate(TopScreenMtx, (layout==0)?hybWidth:0, (layout==1)?hybWidth:0);
M23_Translate(BotScreenMtx, (layout==0)?hybWidth:0, (layout==1)?hybWidth:0);
refpoints[0][layout] += hybWidth;
refpoints[1][layout] += hybWidth;
refpoints[2][layout] += hybWidth;
refpoints[3][layout] += hybWidth;
botTrans[2+layout] += hybWidth;
hybTrans[0] = scale * (rotation == screenRot_0Deg || rotation == screenRot_270Deg ? minX : maxX);
hybTrans[1] = scale * (rotation == screenRot_0Deg || rotation == screenRot_90Deg ? minY : maxY);
M23_Translate(HybScreenMtx, hybTrans[0], hybTrans[1]);
M23_Transform(HybScreenMtx, refpoints[4][0], refpoints[4][1]);
M23_Transform(HybScreenMtx, refpoints[5][0], refpoints[5][1]);
}
}
else
{
int primOffset = (sizing == screenSizing_EmphTop) ? 0 : 2;
int secOffset = (sizing == screenSizing_EmphTop) ? 2 : 0;
float* primMtx = (sizing == screenSizing_EmphTop) ? TopScreenMtx : BotScreenMtx;
float* secMtx = (sizing == screenSizing_EmphTop) ? BotScreenMtx : TopScreenMtx;
float primMinX = refpoints[primOffset][0], primMaxX = primMinX;
float primMinY = refpoints[primOffset][1], primMaxY = primMinY;
float secMinX = refpoints[secOffset][0], secMaxX = secMinX;
float secMinY = refpoints[secOffset][1], secMaxY = secMinY;
primMinX = std::min(primMinX, refpoints[primOffset+1][0]);
primMinY = std::min(primMinY, refpoints[primOffset+1][1]);
primMaxX = std::max(primMaxX, refpoints[primOffset+1][0]);
primMaxY = std::max(primMaxY, refpoints[primOffset+1][1]);
secMinX = std::min(secMinX, refpoints[secOffset+1][0]);
secMinY = std::min(secMinY, refpoints[secOffset+1][1]);
secMaxX = std::max(secMaxX, refpoints[secOffset+1][0]);
secMaxY = std::max(secMaxY, refpoints[secOffset+1][1]);
float primHSize = layout == 1 ? std::max(primMaxX, -primMinX) : primMaxX - primMinX;
float primVSize = layout == 0 ? std::max(primMaxY, -primMinY) : primMaxY - primMinY;
float secHSize = layout == 1 ? std::max(secMaxX, -secMinX) : secMaxX - secMinX;
float secVSize = layout == 0 ? std::max(secMaxY, -secMinY) : secMaxY - secMinY;
float primScale = std::min(screenWidth / primHSize, screenHeight / primVSize);
float secScale = 1.f;
if (integerScale)
primScale = floorf(primScale);
if (layout == 0)
{
if (screenHeight - primVSize * primScale < secVSize)
primScale = std::min(screenWidth / primHSize, (screenHeight - secVSize) / primVSize);
else
secScale = std::min((screenHeight - primVSize * primScale) / secVSize, screenWidth / secHSize);
}
else
{
if (screenWidth - primHSize * primScale < secHSize)
primScale = std::min((screenWidth - secHSize) / primHSize, screenHeight / primVSize);
else
secScale = std::min((screenWidth - primHSize * primScale) / secHSize, screenHeight / secVSize);
}
if (integerScale)
{
primScale = floorf(primScale);
secScale = floorf(secScale);
}
M23_Scale(primMtx, primScale);
M23_Scale(secMtx, secScale);
refpoints[primOffset+0][0] *= primScale;
refpoints[primOffset+0][1] *= primScale;
refpoints[primOffset+1][0] *= primScale;
refpoints[primOffset+1][1] *= primScale;
refpoints[secOffset+0][0] *= secScale;
refpoints[secOffset+0][1] *= secScale;
refpoints[secOffset+1][0] *= secScale;
refpoints[secOffset+1][1] *= secScale;
botScale = (sizing == screenSizing_EmphTop) ? secScale : primScale;
}
}
}
// position
{
float minX = refpoints[posRefPointOffset][0], maxX = minX;
float minY = refpoints[posRefPointOffset][1], maxY = minY;
for (int i = posRefPointOffset + 1; i < posRefPointOffset + posRefPointCount; i++)
{
minX = std::min(minX, refpoints[i][0]);
minY = std::min(minY, refpoints[i][1]);
maxX = std::max(maxX, refpoints[i][0]);
maxY = std::max(maxY, refpoints[i][1]);
}
float width = maxX - minX;
float height = maxY - minY;
float tx = (screenWidth/2) - (width/2) - minX;
float ty = (screenHeight/2) - (height/2) - minY;
M23_Translate(TopScreenMtx, tx, ty);
M23_Translate(BotScreenMtx, tx, ty);
M23_Translate(HybScreenMtx, tx, ty);
botTrans[2] += tx; botTrans[3] += ty;
hybTrans[0] += tx; hybTrans[1] += ty;
}
// prepare a 'reverse' matrix for the touchscreen
// this matrix undoes the transforms applied to the bottom screen
// and can be used to calculate touchscreen coords from host screen coords
if (BotEnable)
{
M23_Identity(TouchMtx);
M23_Translate(TouchMtx, -botTrans[2], -botTrans[3]);
M23_Scale(TouchMtx, 1.f / botScale);
M23_Translate(TouchMtx, -botTrans[0], -botTrans[1]);
float rotmtx[6];
M23_Identity(rotmtx);
M23_RotateFast(rotmtx, (4-rotation) & 3);
M23_Multiply(TouchMtx, rotmtx, TouchMtx);
M23_Scale(TouchMtx, 1.f/botAspect, 1);
M23_Translate(TouchMtx, 256/2, 192/2);
if (HybEnable && HybScreen == 1)
{
M23_Identity(HybTouchMtx);
M23_Translate(HybTouchMtx, -hybTrans[0], -hybTrans[1]);
M23_Scale(HybTouchMtx, 1.f/hybScale);
M23_Multiply(HybTouchMtx, rotmtx, HybTouchMtx);
}
}
}
int GetScreenTransforms(float* out, int* kind)
{
int num = 0;
if (TopEnable)
{
memcpy(out + 6*num, TopScreenMtx, sizeof(TopScreenMtx));
kind[num++] = 0;
}
if (BotEnable)
{
memcpy(out + 6*num, BotScreenMtx, sizeof(BotScreenMtx));
kind[num++] = 1;
}
if (HybEnable)
{
memcpy(out + 6*num, HybScreenMtx, sizeof(HybScreenMtx));
kind[num++] = HybScreen;
}
return num;
}
bool GetTouchCoords(int& x, int& y, bool clamp)
{
if (HybEnable && HybScreen == 1)
{
float vx = x;
float vy = y;
float hvx = x;
float hvy = y;
M23_Transform(TouchMtx, vx, vy);
M23_Transform(HybTouchMtx, hvx, hvy);
if (clamp)
{
if (HybPrevTouchScreen == 1)
{
x = std::clamp((int)vx, 0, 255);
y = std::clamp((int)vy, 0, 191);
return true;
}
if (HybPrevTouchScreen == 2)
{
x = std::clamp((int)hvx, 0, 255);
y = std::clamp((int)hvy, 0, 191);
return true;
}
}
else
{
if (vx >= 0 && vx < 256 && vy >= 0 && vy < 192)
{
HybPrevTouchScreen = 1;
x = (int)vx;
y = (int)vy;
return true;
}
if (hvx >= 0 && hvx < 256 && hvy >= 0 && hvy < 192)
{
HybPrevTouchScreen = 2;
x = (int)hvx;
y = (int)hvy;
return true;
}
}
}
else if (BotEnable)
{
float vx = x;
float vy = y;
M23_Transform(TouchMtx, vx, vy);
if (clamp)
{
x = std::clamp((int)vx, 0, 255);
y = std::clamp((int)vy, 0, 191);
return true;
}
else
{
if (vx >= 0 && vx < 256 && vy >= 0 && vy < 192)
{
x = (int)vx;
y = (int)vy;
return true;
}
}
}
return false;
}
}