melonDS/NDSCart.cpp
StapleButter 2a33a5c480 * fixes to GXFIFO IRQ. refine IRQ support a bit.
* fix potential bug when multiple DMAs are running.
2017-03-03 00:48:26 +01:00

940 lines
20 KiB
C++

/*
Copyright 2016-2017 StapleButter
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include <stdio.h>
#include <string.h>
#include "NDS.h"
#include "NDSCart.h"
namespace NDSCart_SRAM
{
u8* SRAM;
u32 SRAMLength;
char SRAMPath[256];
void (*WriteFunc)(u8 val, bool islast);
u32 Discover_MemoryType;
u32 Discover_Likeliness;
u8* Discover_Buffer;
u32 Discover_DataPos;
u32 Hold;
u8 CurCmd;
u32 DataPos;
u8 Data;
u8 StatusReg;
u32 Addr;
void Write_Null(u8 val, bool islast);
void Write_EEPROMTiny(u8 val, bool islast);
void Write_EEPROM(u8 val, bool islast);
void Write_Flash(u8 val, bool islast);
void Write_Discover(u8 val, bool islast);
bool Init()
{
SRAM = NULL;
Discover_Buffer = NULL;
return true;
}
void DeInit()
{
if (SRAM) delete[] SRAM;
if (Discover_Buffer) delete[] Discover_Buffer;
}
void Reset()
{
}
void LoadSave(char* path)
{
if (SRAM) delete[] SRAM;
if (Discover_Buffer) delete[] Discover_Buffer;
Discover_Buffer = NULL;
strncpy(SRAMPath, path, 255);
SRAMPath[255] = '\0';
FILE* f = fopen(path, "rb");
if (f)
{
fseek(f, 0, SEEK_END);
SRAMLength = (u32)ftell(f);
SRAM = new u8[SRAMLength];
fseek(f, 0, SEEK_SET);
fread(SRAM, SRAMLength, 1, f);
fclose(f);
switch (SRAMLength)
{
case 512: WriteFunc = Write_EEPROMTiny; break;
case 8192:
case 65536: WriteFunc = Write_EEPROM; break;
case 256*1024:
case 512*1024:
case 1024*1024:
case 8192*1024: WriteFunc = Write_Flash; break;
default:
printf("!! BAD SAVE LENGTH %d\n", SRAMLength);
WriteFunc = Write_Null;
break;
}
}
else
{
SRAMLength = 0;
WriteFunc = Write_Discover;
Discover_MemoryType = 2;
Discover_Likeliness = 0;
Discover_DataPos = 0;
Discover_Buffer = new u8[256*1024];
memset(Discover_Buffer, 0, 256*1024);
}
Hold = 0;
CurCmd = 0;
Data = 0;
StatusReg = 0x00;
}
u8 Read()
{
return Data;
}
void SetMemoryType()
{
switch (Discover_MemoryType)
{
case 1:
printf("Save memory type: EEPROM 4k\n");
WriteFunc = Write_EEPROMTiny;
SRAMLength = 512;
break;
case 2:
printf("Save memory type: EEPROM 64k\n");
WriteFunc = Write_EEPROM;
SRAMLength = 8192;
break;
case 3:
printf("Save memory type: EEPROM 512k\n");
WriteFunc = Write_EEPROM;
SRAMLength = 65536;
break;
case 4:
printf("Save memory type: Flash. Hope the size is 256K.\n");
WriteFunc = Write_Flash;
SRAMLength = 256*1024;
break;
case 5:
printf("Save memory type: ...something else\n");
WriteFunc = Write_Null;
SRAMLength = 0;
break;
}
if (!SRAMLength)
return;
SRAM = new u8[SRAMLength];
// replay writes that occured during discovery
u8 prev_cmd = CurCmd;
u32 pos = 0;
while (pos < 256*1024)
{
u32 len = *(u32*)&Discover_Buffer[pos];
pos += 4;
if (len == 0) break;
CurCmd = Discover_Buffer[pos++];
DataPos = 0;
Addr = 0;
Data = 0;
for (u32 i = 1; i < len; i++)
{
WriteFunc(Discover_Buffer[pos++], (i==(len-1)));
DataPos++;
}
}
CurCmd = prev_cmd;
delete[] Discover_Buffer;
}
void Write_Discover(u8 val, bool islast)
{
// attempt at autodetecting the type of save memory.
// we basically hope the game will be nice and clear whole pages of memory.
if (CurCmd == 0x03 || CurCmd == 0x0B)
{
if (Discover_Likeliness)
{
// apply. and pray.
SetMemoryType();
DataPos = 0;
Addr = 0;
Data = 0;
return WriteFunc(val, islast);
}
else
{
Data = 0;
return;
}
}
if (CurCmd == 0x02 || CurCmd == 0x0A)
{
if (DataPos == 0)
Discover_Buffer[Discover_DataPos + 4] = CurCmd;
Discover_Buffer[Discover_DataPos + 5 + DataPos] = val;
if (islast)
{
u32 len = DataPos+1;
*(u32*)&Discover_Buffer[Discover_DataPos] = len+1;
Discover_DataPos += 5+len;
if (Discover_Likeliness <= len)
{
Discover_Likeliness = len;
if (len > 3+256) // bigger Flash, FRAM, whatever
{
Discover_MemoryType = 5;
}
else if (len > 2+128) // Flash
{
Discover_MemoryType = 4;
}
else if (len > 2+32) // EEPROM 512k
{
Discover_MemoryType = 3;
}
else if (len > 1+16 || (len != 1+16 && CurCmd != 0x0A)) // EEPROM 64k
{
Discover_MemoryType = 2;
}
else // EEPROM 4k
{
Discover_MemoryType = 1;
}
}
printf("discover: type=%d likeliness=%d\n", Discover_MemoryType, Discover_Likeliness);
}
}
}
void Write_Null(u8 val, bool islast) {}
void Write_EEPROMTiny(u8 val, bool islast)
{
// TODO
}
void Write_EEPROM(u8 val, bool islast)
{
switch (CurCmd)
{
case 0x02:
if (DataPos < 2)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
SRAM[Addr & (SRAMLength-1)] = val;
Addr++;
}
break;
case 0x03:
if (DataPos < 2)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
Data = SRAM[Addr & (SRAMLength-1)];
Addr++;
}
break;
case 0x9F:
Data = 0xFF;
break;
default:
if (DataPos==0)
printf("unknown EEPROM save command %02X\n", CurCmd);
break;
}
}
void Write_Flash(u8 val, bool islast)
{
switch (CurCmd)
{
case 0x03:
if (DataPos < 3)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
// CHECKME: does Flash also wraparound when the address is out of bounds?
if (Addr >= SRAMLength)
Data = 0;
else
Data = SRAM[Addr];
Addr++;
}
break;
case 0x0A:
if (DataPos < 3)
{
Addr <<= 8;
Addr |= val;
Data = 0;
}
else
{
if (Addr < SRAMLength)
SRAM[Addr] = val;
Addr++;
}
break;
case 0x9F:
Data = 0xFF;
break;
default:
if (DataPos==0)
printf("unknown Flash save command %02X\n", CurCmd);
break;
}
}
void Write(u8 val, u32 hold)
{
bool islast = false;
if (!hold)
{
if (Hold) islast = true;
Hold = 0;
}
if (hold && (!Hold))
{
CurCmd = val;
Hold = 1;
Data = 0;
DataPos = 0;
Addr = 0;
//printf("save SPI command %02X\n", CurCmd);
return;
}
switch (CurCmd)
{
case 0x02:
case 0x03:
case 0x0A:
case 0x0B:
case 0x9F:
WriteFunc(val, islast);
DataPos++;
break;
case 0x04: // write disable
StatusReg &= ~(1<<1);
Data = 0;
break;
case 0x05: // read status reg
Data = StatusReg;
break;
case 0x06: // write enable
StatusReg |= (1<<1);
Data = 0;
break;
default:
if (DataPos==0)
printf("unknown save SPI command %02X\n", CurCmd);
break;
}
if (islast && (CurCmd == 0x02 || CurCmd == 0x0A))
{
FILE* f = fopen(SRAMPath, "wb");
if (f)
{
fwrite(SRAM, SRAMLength, 1, f);
fclose(f);
}
}
}
}
namespace NDSCart
{
u16 SPICnt;
u32 ROMCnt;
u8 ROMCommand[8];
u32 ROMDataOut;
u8 DataOut[0x4000];
u32 DataOutPos;
u32 DataOutLen;
bool CartInserted;
u8* CartROM;
u32 CartROMSize;
u32 CartID;
bool CartIsHomebrew;
u32 CmdEncMode;
u32 DataEncMode;
u32 Key1_KeyBuf[0x412];
u64 Key2_X;
u64 Key2_Y;
u32 ByteSwap(u32 val)
{
return (val >> 24) | ((val >> 8) & 0xFF00) | ((val << 8) & 0xFF0000) | (val << 24);
}
void Key1_Encrypt(u32* data)
{
u32 y = data[0];
u32 x = data[1];
u32 z;
for (u32 i = 0x0; i <= 0xF; i++)
{
z = Key1_KeyBuf[i] ^ x;
x = Key1_KeyBuf[0x012 + (z >> 24) ];
x += Key1_KeyBuf[0x112 + ((z >> 16) & 0xFF)];
x ^= Key1_KeyBuf[0x212 + ((z >> 8) & 0xFF)];
x += Key1_KeyBuf[0x312 + (z & 0xFF)];
x ^= y;
y = z;
}
data[0] = x ^ Key1_KeyBuf[0x10];
data[1] = y ^ Key1_KeyBuf[0x11];
}
void Key1_Decrypt(u32* data)
{
u32 y = data[0];
u32 x = data[1];
u32 z;
for (u32 i = 0x11; i >= 0x2; i--)
{
z = Key1_KeyBuf[i] ^ x;
x = Key1_KeyBuf[0x012 + (z >> 24) ];
x += Key1_KeyBuf[0x112 + ((z >> 16) & 0xFF)];
x ^= Key1_KeyBuf[0x212 + ((z >> 8) & 0xFF)];
x += Key1_KeyBuf[0x312 + (z & 0xFF)];
x ^= y;
y = z;
}
data[0] = x ^ Key1_KeyBuf[0x1];
data[1] = y ^ Key1_KeyBuf[0x0];
}
void Key1_ApplyKeycode(u32* keycode, u32 mod)
{
Key1_Encrypt(&keycode[1]);
Key1_Encrypt(&keycode[0]);
u32 temp[2] = {0,0};
for (u32 i = 0; i <= 0x11; i++)
{
Key1_KeyBuf[i] ^= ByteSwap(keycode[i % mod]);
}
for (u32 i = 0; i <= 0x410; i+=2)
{
Key1_Encrypt(temp);
Key1_KeyBuf[i ] = temp[1];
Key1_KeyBuf[i+1] = temp[0];
}
}
void Key1_InitKeycode(u32 idcode, u32 level, u32 mod)
{
memcpy(Key1_KeyBuf, &NDS::ARM7BIOS[0x30], 0x1048); // hax
u32 keycode[3] = {idcode, idcode>>1, idcode<<1};
if (level >= 1) Key1_ApplyKeycode(keycode, mod);
if (level >= 2) Key1_ApplyKeycode(keycode, mod);
if (level >= 3)
{
keycode[1] <<= 1;
keycode[2] >>= 1;
Key1_ApplyKeycode(keycode, mod);
}
}
void Key2_Encrypt(u8* data, u32 len)
{
for (u32 i = 0; i < len; i++)
{
Key2_X = (((Key2_X >> 5) ^
(Key2_X >> 17) ^
(Key2_X >> 18) ^
(Key2_X >> 31)) & 0xFF)
+ (Key2_X << 8);
Key2_Y = (((Key2_Y >> 5) ^
(Key2_Y >> 23) ^
(Key2_Y >> 18) ^
(Key2_Y >> 31)) & 0xFF)
+ (Key2_Y << 8);
Key2_X &= 0x0000007FFFFFFFFFULL;
Key2_Y &= 0x0000007FFFFFFFFFULL;
}
}
bool Init()
{
if (!NDSCart_SRAM::Init()) return false;
return true;
}
void DeInit()
{
NDSCart_SRAM::DeInit();
}
void Reset()
{
SPICnt = 0;
ROMCnt = 0;
memset(ROMCommand, 0, 8);
ROMDataOut = 0;
Key2_X = 0;
Key2_Y = 0;
memset(DataOut, 0, 0x4000);
DataOutPos = 0;
DataOutLen = 0;
CartInserted = false;
CartROM = NULL;
CartROMSize = 0;
CartID = 0;
CartIsHomebrew = false;
CmdEncMode = 0;
DataEncMode = 0;
NDSCart_SRAM::Reset();
}
bool LoadROM(char* path)
{
// TODO: streaming mode? for really big ROMs or systems with limited RAM
// for now we're lazy
FILE* f = fopen(path, "rb");
if (!f)
{
printf("Failed to open ROM file %s\n", path);
return false;
}
fseek(f, 0, SEEK_END);
u32 len = (u32)ftell(f);
CartROMSize = 0x200;
while (CartROMSize < len)
CartROMSize <<= 1;
u32 gamecode;
fseek(f, 0x0C, SEEK_SET);
fread(&gamecode, 4, 1, f);
CartROM = new u8[CartROMSize];
memset(CartROM, 0, CartROMSize);
fseek(f, 0, SEEK_SET);
fread(CartROM, 1, len, f);
fclose(f);
//CartROM = f;
// temp. TODO: later make this user selectable
// calling this sets up shit for booting from the cart directly.
// normal behavior is booting from the BIOS.
NDS::SetupDirectBoot();
CartInserted = true;
// generate a ROM ID
// note: most games don't check the actual value
// it just has to stay the same throughout gameplay
CartID = 0x00001FC2;
u32 arm9base = *(u32*)&CartROM[0x20];
if (arm9base < 0x8000)
{
if (arm9base >= 0x4000)
{
// reencrypt secure area if needed
if (*(u32*)&CartROM[arm9base] == 0xE7FFDEFF)
{
printf("Re-encrypting cart secure area\n");
strncpy((char*)&CartROM[arm9base], "encryObj", 8);
Key1_InitKeycode(gamecode, 3, 2);
for (u32 i = 0; i < 0x800; i += 8)
Key1_Encrypt((u32*)&CartROM[arm9base + i]);
Key1_InitKeycode(gamecode, 2, 2);
Key1_Encrypt((u32*)&CartROM[arm9base]);
}
}
else
CartIsHomebrew = true;
}
// encryption
Key1_InitKeycode(gamecode, 2, 2);
// save
char savepath[256];
strncpy(savepath, path, 255);
savepath[255] = '\0';
strncpy(savepath + strlen(path) - 3, "sav", 3);
printf("Save file: %s\n", savepath);
NDSCart_SRAM::LoadSave(savepath);
return true;
}
void ReadROM(u32 addr, u32 len, u32 offset)
{
if (!CartInserted) return;
if (addr >= CartROMSize) return;
if ((addr+len) > CartROMSize)
len = CartROMSize - addr;
memcpy(DataOut+offset, CartROM+addr, len);
}
void ReadROM_B7(u32 addr, u32 len, u32 offset)
{
addr &= (CartROMSize-1);
if (!CartIsHomebrew)
{
if (addr < 0x8000)
addr = 0x8000 + (addr & 0x1FF);
}
memcpy(DataOut+offset, CartROM+addr, len);
}
void EndTransfer()
{
ROMCnt &= ~(1<<23);
ROMCnt &= ~(1<<31);
if (SPICnt & (1<<14))
NDS::SetIRQ((NDS::ExMemCnt[0]>>11)&0x1, NDS::IRQ_CartSendDone);
}
void ROMPrepareData(u32 param)
{
if (DataOutPos >= DataOutLen)
ROMDataOut = 0;
else
ROMDataOut = *(u32*)&DataOut[DataOutPos];
DataOutPos += 4;
ROMCnt |= (1<<23);
NDS::CheckDMAs(0, 0x06);
NDS::CheckDMAs(1, 0x12);
//if (DataOutPos < DataOutLen)
// NDS::ScheduleEvent((ROMCnt & (1<<27)) ? 8:5, ROMPrepareData, 0);
}
void WriteROMCnt(u32 val)
{
ROMCnt = val & 0xFF7F7FFF;
if (!(SPICnt & (1<<15))) return;
if (val & (1<<15))
{
u32 snum = (NDS::ExMemCnt[0]>>8)&0x8;
u64 seed0 = *(u32*)&NDS::ROMSeed0[snum] | ((u64)NDS::ROMSeed0[snum+4] << 32);
u64 seed1 = *(u32*)&NDS::ROMSeed1[snum] | ((u64)NDS::ROMSeed1[snum+4] << 32);
Key2_X = 0;
Key2_Y = 0;
for (u32 i = 0; i < 39; i++)
{
if (seed0 & (1ULL << i)) Key2_X |= (1ULL << (38-i));
if (seed1 & (1ULL << i)) Key2_Y |= (1ULL << (38-i));
}
printf("seed0: %02X%08X\n", (u32)(seed0>>32), (u32)seed0);
printf("seed1: %02X%08X\n", (u32)(seed1>>32), (u32)seed1);
printf("key2 X: %02X%08X\n", (u32)(Key2_X>>32), (u32)Key2_X);
printf("key2 Y: %02X%08X\n", (u32)(Key2_Y>>32), (u32)Key2_Y);
}
if (!(ROMCnt & (1<<31))) return;
u32 datasize = (ROMCnt >> 24) & 0x7;
if (datasize == 7)
datasize = 4;
else if (datasize > 0)
datasize = 0x100 << datasize;
DataOutPos = 0;
DataOutLen = datasize;
// handle KEY1 encryption as needed.
// KEY2 encryption is implemented in hardware and doesn't need to be handled.
u8 cmd[8];
if (CmdEncMode == 1)
{
*(u32*)&cmd[0] = ByteSwap(*(u32*)&ROMCommand[4]);
*(u32*)&cmd[4] = ByteSwap(*(u32*)&ROMCommand[0]);
Key1_Decrypt((u32*)cmd);
u32 tmp = ByteSwap(*(u32*)&cmd[4]);
*(u32*)&cmd[4] = ByteSwap(*(u32*)&cmd[0]);
*(u32*)&cmd[0] = tmp;
}
else
{
*(u32*)&cmd[0] = *(u32*)&ROMCommand[0];
*(u32*)&cmd[4] = *(u32*)&ROMCommand[4];
}
/*printf("ROM COMMAND %04X %08X %02X%02X%02X%02X%02X%02X%02X%02X SIZE %04X\n",
SPICnt, ROMCnt,
cmd[0], cmd[1], cmd[2], cmd[3],
cmd[4], cmd[5], cmd[6], cmd[7],
datasize);*/
switch (cmd[0])
{
case 0x9F:
memset(DataOut, 0xFF, DataOutLen);
break;
case 0x00:
memset(DataOut, 0, DataOutLen);
if (DataOutLen > 0x1000)
{
ReadROM(0, 0x1000, 0);
for (u32 pos = 0x1000; pos < DataOutLen; pos += 0x1000)
memcpy(DataOut+pos, DataOut, 0x1000);
}
else
ReadROM(0, DataOutLen, 0);
break;
case 0x90:
case 0xB8:
for (u32 pos = 0; pos < DataOutLen; pos += 4)
*(u32*)&DataOut[pos] = CartID;
break;
case 0x3C:
CmdEncMode = 1;
break;
case 0xB7:
{
u32 addr = (cmd[1]<<24) | (cmd[2]<<16) | (cmd[3]<<8) | cmd[4];
memset(DataOut, 0, DataOutLen);
if (((addr + DataOutLen - 1) >> 12) != (addr >> 12))
{
u32 len1 = 0x1000 - (addr & 0xFFF);
ReadROM_B7(addr, len1, 0);
ReadROM_B7(addr+len1, DataOutLen-len1, len1);
}
else
ReadROM_B7(addr, DataOutLen, 0);
}
break;
default:
switch (cmd[0] & 0xF0)
{
case 0x40:
DataEncMode = 2;
break;
case 0x10:
for (u32 pos = 0; pos < DataOutLen; pos += 4)
*(u32*)&DataOut[pos] = CartID;
break;
case 0x20:
{
u32 addr = (cmd[2] & 0xF0) << 8;
ReadROM(addr, 0x1000, 0);
}
break;
case 0xA0:
CmdEncMode = 2;
break;
}
break;
}
//ROMCnt &= ~(1<<23);
ROMCnt |= (1<<23);
if (datasize == 0)
EndTransfer();
else
{
NDS::CheckDMAs(0, 0x05);
NDS::CheckDMAs(1, 0x12);
}
//NDS::ScheduleEvent((ROMCnt & (1<<27)) ? 8:5, ROMPrepareData, 0);
}
u32 ReadROMData()
{
/*if (ROMCnt & (1<<23))
{
ROMCnt &= ~(1<<23);
if (DataOutPos >= DataOutLen)
EndTransfer();
}
return ROMDataOut;*/
u32 ret;
if (DataOutPos >= DataOutLen)
ret = 0;
else
ret = *(u32*)&DataOut[DataOutPos];
DataOutPos += 4;
if (DataOutPos == DataOutLen)
EndTransfer();
return ret;
}
void DMA(u32 addr)
{
void (*writefn)(u32,u32) = (NDS::ExMemCnt[0] & (1<<11)) ? NDS::ARM7Write32 : NDS::ARM9Write32;
for (u32 i = 0; i < DataOutLen; i+=4)
{
writefn(addr+i, *(u32*)&DataOut[i]);
}
EndTransfer();
}
void WriteSPICnt(u16 val)
{
SPICnt = (SPICnt & 0x0080) | (val & 0xE043);
}
u8 ReadSPIData()
{
if (!(SPICnt & (1<<15))) return 0;
if (!(SPICnt & (1<<13))) return 0;
return NDSCart_SRAM::Read();
}
void WriteSPIData(u8 val)
{
if (!(SPICnt & (1<<15))) return;
if (!(SPICnt & (1<<13))) return;
// TODO: take delays into account
NDSCart_SRAM::Write(val, SPICnt&(1<<6));
}
}