Files
melonDS/src/ARMJIT_x64/ARMJIT_LoadStore.cpp
RSDuck ff97211114 jit: thumb block transfer working
also pc and sp relative loads and some refactoring
2020-04-26 13:02:57 +02:00

838 lines
25 KiB
C++

#include "ARMJIT_Compiler.h"
#include "../GPU.h"
#include "../Wifi.h"
using namespace Gen;
namespace ARMJIT
{
template <typename T>
int squeezePointer(T* ptr)
{
int truncated = (int)((u64)ptr);
assert((T*)((u64)truncated) == ptr);
return truncated;
}
/*
According to DeSmuME and my own research, approx. 99% (seriously, that's an empirical number)
of all memory load and store instructions always access addresses in the same region as
during the their first execution.
I tried multiple optimisations, which would benefit from this behaviour
(having fast paths for the first region, …), though none of them yielded a measureable
improvement.
*/
/*
address - ABI_PARAM1 (a.k.a. ECX = RSCRATCH3 on Windows)
store value - ABI_PARAM2 (a.k.a. RDX = RSCRATCH2 on Windows)
code cycles - ABI_PARAM3
*/
#define CALC_CYCLES_9(numC, numD, scratch) \
LEA(32, scratch, MComplex(numD, numC, SCALE_1, -6)); \
CMP(32, R(numC), R(numD)); \
CMOVcc(32, numD, R(numC), CC_G); \
CMP(32, R(numD), R(scratch)); \
CMOVcc(32, scratch, R(numD), CC_G); \
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(scratch));
#define CALC_CYCLES_7_DATA_MAIN_RAM(numC, numD, scratch) \
if (codeMainRAM) \
{ \
LEA(32, scratch, MRegSum(numD, numC)); \
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(scratch)); \
} \
else \
{ \
if (!store) \
ADD(32, R(numC), Imm8(1)); \
LEA(32, scratch, MComplex(numD, numC, SCALE_1, -3)); \
CMP(32, R(numD), R(numC)); \
CMOVcc(32, numC, R(numD), CC_G); \
CMP(32, R(numC), R(scratch)); \
CMOVcc(32, scratch, R(numC), CC_G); \
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(scratch)); \
}
#define CALC_CYCLES_7_DATA_NON_MAIN_RAM(numC, numD, scratch) \
if (codeMainRAM) \
{ \
if (!store) \
ADD(32, R(numD), Imm8(1)); \
LEA(32, scratch, MComplex(numD, numC, SCALE_1, -3)); \
CMP(32, R(numD), R(numC)); \
CMOVcc(32, numC, R(numD), CC_G); \
CMP(32, R(numC), R(scratch)); \
CMOVcc(32, scratch, R(numC), CC_G); \
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(scratch)); \
} \
else \
{ \
LEA(32, scratch, MComplex(numD, numC, SCALE_1, store ? 0 : 1)); \
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(scratch)); \
}
void* Compiler::Gen_MemoryRoutine9(bool store, int size)
{
u32 addressMask = ~(size == 32 ? 3 : (size == 16 ? 1 : 0));
AlignCode4();
void* res = GetWritableCodePtr();
MOV(32, R(RSCRATCH), R(ABI_PARAM1));
SUB(32, R(RSCRATCH), MDisp(RCPU, offsetof(ARMv5, DTCMBase)));
CMP(32, R(RSCRATCH), MDisp(RCPU, offsetof(ARMv5, DTCMSize)));
FixupBranch insideDTCM = J_CC(CC_B);
CMP(32, R(ABI_PARAM1), MDisp(RCPU, offsetof(ARMv5, ITCMSize)));
FixupBranch insideITCM = J_CC(CC_B);
// cycle counting!
MOV(32, R(ABI_PARAM4), R(ABI_PARAM1));
SHR(32, R(ABI_PARAM4), Imm8(12));
MOVZX(32, 8, ABI_PARAM4, MComplex(RCPU, ABI_PARAM4, SCALE_4, offsetof(ARMv5, MemTimings) + (size == 32 ? 2 : 1)));
CALC_CYCLES_9(ABI_PARAM3, ABI_PARAM4, RSCRATCH)
if (store)
{
if (size > 8)
AND(32, R(ABI_PARAM1), Imm32(addressMask));
switch (size)
{
case 32: JMP((u8*)NDS::ARM9Write32, true); break;
case 16: JMP((u8*)NDS::ARM9Write16, true); break;
case 8: JMP((u8*)NDS::ARM9Write8, true); break;
}
}
else
{
if (size == 32)
{
ABI_PushRegistersAndAdjustStack({ABI_PARAM1}, 8);
AND(32, R(ABI_PARAM1), Imm32(addressMask));
// everything's already in the appropriate register
ABI_CallFunction(NDS::ARM9Read32);
ABI_PopRegistersAndAdjustStack({ECX}, 8);
AND(32, R(ECX), Imm8(3));
SHL(32, R(ECX), Imm8(3));
ROR_(32, R(RSCRATCH), R(ECX));
RET();
}
else if (size == 16)
{
AND(32, R(ABI_PARAM1), Imm32(addressMask));
JMP((u8*)NDS::ARM9Read16, true);
}
else
JMP((u8*)NDS::ARM9Read8, true);
}
SetJumpTarget(insideDTCM);
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(ABI_PARAM3));
AND(32, R(RSCRATCH), Imm32(0x3FFF & addressMask));
if (store)
MOV(size, MComplex(RCPU, RSCRATCH, SCALE_1, offsetof(ARMv5, DTCM)), R(ABI_PARAM2));
else
{
MOVZX(32, size, RSCRATCH, MComplex(RCPU, RSCRATCH, SCALE_1, offsetof(ARMv5, DTCM)));
if (size == 32)
{
if (ABI_PARAM1 != ECX)
MOV(32, R(ECX), R(ABI_PARAM1));
AND(32, R(ECX), Imm8(3));
SHL(32, R(ECX), Imm8(3));
ROR_(32, R(RSCRATCH), R(ECX));
}
}
RET();
SetJumpTarget(insideITCM);
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(ABI_PARAM3));
MOV(32, R(ABI_PARAM3), R(ABI_PARAM1)); // free up ECX
AND(32, R(ABI_PARAM3), Imm32(0x7FFF & addressMask));
if (store)
{
MOV(size, MComplex(RCPU, ABI_PARAM3, SCALE_1, offsetof(ARMv5, ITCM)), R(ABI_PARAM2));
XOR(32, R(RSCRATCH), R(RSCRATCH));
MOV(64, MScaled(ABI_PARAM3, SCALE_4, squeezePointer(cache.ARM9_ITCM)), R(RSCRATCH));
if (size == 32)
MOV(64, MScaled(ABI_PARAM3, SCALE_4, squeezePointer(cache.ARM9_ITCM) + 8), R(RSCRATCH));
}
else
{
MOVZX(32, size, RSCRATCH, MComplex(RCPU, ABI_PARAM3, SCALE_1, offsetof(ARMv5, ITCM)));
if (size == 32)
{
if (ABI_PARAM1 != ECX)
MOV(32, R(ECX), R(ABI_PARAM1));
AND(32, R(ECX), Imm8(3));
SHL(32, R(ECX), Imm8(3));
ROR_(32, R(RSCRATCH), R(ECX));
}
}
RET();
static_assert(RSCRATCH == EAX);
return res;
}
void* Compiler::Gen_MemoryRoutine7(bool store, bool codeMainRAM, int size)
{
u32 addressMask = ~(size == 32 ? 3 : (size == 16 ? 1 : 0));
AlignCode4();
void* res = GetWritableCodePtr();
MOV(32, R(RSCRATCH), R(ABI_PARAM1));
SHR(32, R(RSCRATCH), Imm8(15));
MOVZX(32, 8, ABI_PARAM4, MScaled(RSCRATCH, SCALE_4, (size == 32 ? 2 : 0) + squeezePointer(NDS::ARM7MemTimings)));
MOV(32, R(RSCRATCH), R(ABI_PARAM1));
AND(32, R(RSCRATCH), Imm32(0xFF000000));
CMP(32, R(RSCRATCH), Imm32(0x02000000));
FixupBranch outsideMainRAM = J_CC(CC_NE);
CALC_CYCLES_7_DATA_MAIN_RAM(ABI_PARAM3, ABI_PARAM4, RSCRATCH)
MOV(32, R(ABI_PARAM3), R(ABI_PARAM1));
AND(32, R(ABI_PARAM3), Imm32((MAIN_RAM_SIZE - 1) & addressMask));
if (store)
{
MOV(size, MDisp(ABI_PARAM3, squeezePointer(NDS::MainRAM)), R(ABI_PARAM2));
XOR(32, R(RSCRATCH), R(RSCRATCH));
MOV(64, MScaled(ABI_PARAM3, SCALE_4, squeezePointer(cache.MainRAM)), R(RSCRATCH));
if (size == 32)
MOV(64, MScaled(ABI_PARAM3, SCALE_4, squeezePointer(cache.MainRAM) + 8), R(RSCRATCH));
}
else
{
MOVZX(32, size, RSCRATCH, MDisp(ABI_PARAM3, squeezePointer(NDS::MainRAM)));
if (size == 32)
{
if (ABI_PARAM1 != ECX)
MOV(32, R(ECX), R(ABI_PARAM1));
AND(32, R(ECX), Imm8(3));
SHL(32, R(ECX), Imm8(3));
ROR_(32, R(RSCRATCH), R(ECX));
}
}
RET();
SetJumpTarget(outsideMainRAM);
CALC_CYCLES_7_DATA_NON_MAIN_RAM(ABI_PARAM3, ABI_PARAM4, RSCRATCH)
if (store)
{
if (size > 8)
AND(32, R(ABI_PARAM1), Imm32(addressMask));
switch (size)
{
case 32: JMP((u8*)NDS::ARM7Write32, true); break;
case 16: JMP((u8*)NDS::ARM7Write16, true); break;
case 8: JMP((u8*)NDS::ARM7Write8, true); break;
}
}
else
{
if (size == 32)
{
ABI_PushRegistersAndAdjustStack({ABI_PARAM1}, 8);
AND(32, R(ABI_PARAM1), Imm32(addressMask));
ABI_CallFunction(NDS::ARM7Read32);
ABI_PopRegistersAndAdjustStack({ECX}, 8);
AND(32, R(ECX), Imm8(3));
SHL(32, R(ECX), Imm8(3));
ROR_(32, R(RSCRATCH), R(ECX));
RET();
}
else if (size == 16)
{
AND(32, R(ABI_PARAM1), Imm32(addressMask));
JMP((u8*)NDS::ARM7Read16, true);
}
else
JMP((u8*)NDS::ARM7Read8, true);
}
return res;
}
#define MEMORY_SEQ_WHILE_COND \
if (!store) \
MOV(32, currentElement, R(EAX));\
if (!preinc) \
ADD(32, R(ABI_PARAM1), Imm8(4)); \
\
SUB(32, R(ABI_PARAM3), Imm8(1)); \
J_CC(CC_NZ, repeat);
/*
ABI_PARAM1 address
ABI_PARAM2 address where registers are stored
ABI_PARAM3 how many values to read/write
ABI_PARAM4 code cycles
Dolphin x64CodeEmitter is my favourite assembler
*/
void* Compiler::Gen_MemoryRoutineSeq9(bool store, bool preinc)
{
const u8* zero = GetCodePtr();
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(ABI_PARAM4));
RET();
void* res = (void*)GetWritableCodePtr();
TEST(32, R(ABI_PARAM3), R(ABI_PARAM3));
J_CC(CC_Z, zero);
PUSH(ABI_PARAM3);
PUSH(ABI_PARAM4); // we need you later
const u8* repeat = GetCodePtr();
if (preinc)
ADD(32, R(ABI_PARAM1), Imm8(4));
MOV(32, R(RSCRATCH), R(ABI_PARAM1));
SUB(32, R(RSCRATCH), MDisp(RCPU, offsetof(ARMv5, DTCMBase)));
CMP(32, R(RSCRATCH), MDisp(RCPU, offsetof(ARMv5, DTCMSize)));
FixupBranch insideDTCM = J_CC(CC_B);
CMP(32, R(ABI_PARAM1), MDisp(RCPU, offsetof(ARMv5, ITCMSize)));
FixupBranch insideITCM = J_CC(CC_B);
OpArg currentElement = MComplex(ABI_PARAM2, ABI_PARAM3, SCALE_8, -8); // wasting stack space like a gangster
ABI_PushRegistersAndAdjustStack({ABI_PARAM1, ABI_PARAM2, ABI_PARAM3}, 8);
AND(32, R(ABI_PARAM1), Imm8(~3));
if (store)
{
MOV(32, R(ABI_PARAM2), currentElement);
CALL((void*)NDS::ARM9Write32);
}
else
CALL((void*)NDS::ARM9Read32);
ABI_PopRegistersAndAdjustStack({ABI_PARAM1, ABI_PARAM2, ABI_PARAM3}, 8);
MEMORY_SEQ_WHILE_COND
MOV(32, R(RSCRATCH), R(ABI_PARAM1));
SHR(32, R(RSCRATCH), Imm8(12));
MOVZX(32, 8, ABI_PARAM2, MComplex(RCPU, RSCRATCH, SCALE_4, 2 + offsetof(ARMv5, MemTimings)));
MOVZX(32, 8, RSCRATCH, MComplex(RCPU, RSCRATCH, SCALE_4, 3 + offsetof(ARMv5, MemTimings)));
FixupBranch finishIt1 = J();
SetJumpTarget(insideDTCM);
AND(32, R(RSCRATCH), Imm32(0x3FFF & ~3));
if (store)
{
MOV(32, R(ABI_PARAM4), currentElement);
MOV(32, MComplex(RCPU, RSCRATCH, SCALE_1, offsetof(ARMv5, DTCM)), R(ABI_PARAM4));
}
else
MOV(32, R(RSCRATCH), MComplex(RCPU, RSCRATCH, SCALE_1, offsetof(ARMv5, DTCM)));
MEMORY_SEQ_WHILE_COND
MOV(32, R(RSCRATCH), Imm32(1)); // sequential access time
MOV(32, R(ABI_PARAM2), Imm32(1)); // non sequential
FixupBranch finishIt2 = J();
SetJumpTarget(insideITCM);
MOV(32, R(RSCRATCH), R(ABI_PARAM1));
AND(32, R(RSCRATCH), Imm32(0x7FFF & ~3));
if (store)
{
MOV(32, R(ABI_PARAM4), currentElement);
MOV(32, MComplex(RCPU, RSCRATCH, SCALE_1, offsetof(ARMv5, ITCM)), R(ABI_PARAM4));
XOR(32, R(ABI_PARAM4), R(ABI_PARAM4));
MOV(64, MScaled(RSCRATCH, SCALE_4, squeezePointer(cache.ARM9_ITCM)), R(ABI_PARAM4));
MOV(64, MScaled(RSCRATCH, SCALE_4, squeezePointer(cache.ARM9_ITCM) + 8), R(ABI_PARAM4));
}
else
MOV(32, R(RSCRATCH), MComplex(RCPU, RSCRATCH, SCALE_1, offsetof(ARMv5, ITCM)));
MEMORY_SEQ_WHILE_COND
MOV(32, R(RSCRATCH), Imm32(1));
MOV(32, R(ABI_PARAM2), Imm32(1));
SetJumpTarget(finishIt1);
SetJumpTarget(finishIt2);
POP(ABI_PARAM4);
POP(ABI_PARAM3);
CMP(32, R(ABI_PARAM3), Imm8(1));
FixupBranch skipSequential = J_CC(CC_E);
SUB(32, R(ABI_PARAM3), Imm8(1));
IMUL(32, R(ABI_PARAM3));
ADD(32, R(ABI_PARAM2), R(RSCRATCH));
SetJumpTarget(skipSequential);
CALC_CYCLES_9(ABI_PARAM4, ABI_PARAM2, RSCRATCH)
RET();
return res;
}
void* Compiler::Gen_MemoryRoutineSeq7(bool store, bool preinc, bool codeMainRAM)
{
const u8* zero = GetCodePtr();
ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), R(ABI_PARAM4));
RET();
void* res = (void*)GetWritableCodePtr();
TEST(32, R(ABI_PARAM3), R(ABI_PARAM3));
J_CC(CC_Z, zero);
PUSH(ABI_PARAM3);
PUSH(ABI_PARAM4); // we need you later
const u8* repeat = GetCodePtr();
if (preinc)
ADD(32, R(ABI_PARAM1), Imm8(4));
OpArg currentElement = MComplex(ABI_PARAM2, ABI_PARAM3, SCALE_8, -8);
ABI_PushRegistersAndAdjustStack({ABI_PARAM1, ABI_PARAM2, ABI_PARAM3}, 8);
AND(32, R(ABI_PARAM1), Imm8(~3));
if (store)
{
MOV(32, R(ABI_PARAM2), currentElement);
CALL((void*)NDS::ARM7Write32);
}
else
CALL((void*)NDS::ARM7Read32);
ABI_PopRegistersAndAdjustStack({ABI_PARAM1, ABI_PARAM2, ABI_PARAM3}, 8);
MEMORY_SEQ_WHILE_COND
MOV(32, R(RSCRATCH), R(ABI_PARAM1));
SHR(32, R(RSCRATCH), Imm8(15));
MOVZX(32, 8, ABI_PARAM2, MScaled(RSCRATCH, SCALE_4, 2 + squeezePointer(NDS::ARM7MemTimings)));
MOVZX(32, 8, RSCRATCH, MScaled(RSCRATCH, SCALE_4, 3 + squeezePointer(NDS::ARM7MemTimings)));
POP(ABI_PARAM4);
POP(ABI_PARAM3);
CMP(32, R(ABI_PARAM3), Imm8(1));
FixupBranch skipSequential = J_CC(CC_E);
SUB(32, R(ABI_PARAM3), Imm8(1));
IMUL(32, R(ABI_PARAM3));
ADD(32, R(ABI_PARAM2), R(RSCRATCH));
SetJumpTarget(skipSequential);
MOV(32, R(RSCRATCH), R(ABI_PARAM1));
AND(32, R(RSCRATCH), Imm32(0xFF000000));
CMP(32, R(RSCRATCH), Imm32(0x02000000));
FixupBranch outsideMainRAM = J_CC(CC_NE);
CALC_CYCLES_7_DATA_MAIN_RAM(ABI_PARAM4, ABI_PARAM2, RSCRATCH)
RET();
SetJumpTarget(outsideMainRAM);
CALC_CYCLES_7_DATA_NON_MAIN_RAM(ABI_PARAM4, ABI_PARAM2, RSCRATCH)
RET();
return res;
}
#undef CALC_CYCLES_9
#undef MEMORY_SEQ_WHILE_COND
void Compiler::Comp_MemAccess(OpArg rd, bool signExtend, bool store, int size)
{
if (store)
MOV(32, R(ABI_PARAM2), rd);
u32 cycles = Num
? NDS::ARM7MemTimings[CurInstr.CodeCycles][Thumb ? 0 : 2]
: (R15 & 0x2 ? 0 : CurInstr.CodeCycles);
MOV(32, R(ABI_PARAM3), Imm32(cycles));
CALL(Num == 0
? MemoryFuncs9[size >> 4][store]
: MemoryFuncs7[size >> 4][store][CodeRegion == 0x02]);
if (!store)
{
if (signExtend)
MOVSX(32, size, rd.GetSimpleReg(), R(RSCRATCH));
else
MOVZX(32, size, rd.GetSimpleReg(), R(RSCRATCH));
}
}
s32 Compiler::Comp_MemAccessBlock(OpArg rb, BitSet16 regs, bool store, bool preinc, bool decrement, bool usermode)
{
int regsCount = regs.Count();
const u8 userModeOffsets[] =
{
offsetof(ARM, R[8]), offsetof(ARM, R[9]), offsetof(ARM, R[10]), offsetof(ARM, R[11]),
offsetof(ARM, R[12]), offsetof(ARM, R[13]), offsetof(ARM, R[14]), 0,
offsetof(ARM, R_FIQ[0]), offsetof(ARM, R_FIQ[1]), offsetof(ARM, R_FIQ[2]), offsetof(ARM, R_FIQ[3]),
offsetof(ARM, R_FIQ[4]), offsetof(ARM, R_FIQ[5]), offsetof(ARM, R_FIQ[6]), 0,
offsetof(ARM, R[8]), offsetof(ARM, R[9]), offsetof(ARM, R[10]), offsetof(ARM, R[11]),
offsetof(ARM, R[12]), offsetof(ARM, R_IRQ[13]), offsetof(ARM, R_IRQ[14]), 0,
offsetof(ARM, R[8]), offsetof(ARM, R[9]), offsetof(ARM, R[10]), offsetof(ARM, R[11]),
offsetof(ARM, R[12]), offsetof(ARM, R_SVC[13]), offsetof(ARM, R_SVC[14]), 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
offsetof(ARM, R[8]), offsetof(ARM, R[9]), offsetof(ARM, R[10]), offsetof(ARM, R[11]),
offsetof(ARM, R[12]), offsetof(ARM, R_ABT[13]), offsetof(ARM, R_ABT[14]), 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
offsetof(ARM, R[8]), offsetof(ARM, R[9]), offsetof(ARM, R[10]), offsetof(ARM, R[11]),
offsetof(ARM, R[12]), offsetof(ARM, R_UND[13]), offsetof(ARM, R_UND[14]), 0,
};
if (decrement)
{
MOV_sum(32, ABI_PARAM1, rb, Imm32(-regsCount * 4));
preinc = !preinc;
}
else
MOV(32, R(ABI_PARAM1), rb);
MOV(32, R(ABI_PARAM3), Imm32(regsCount));
u32 cycles = Num
? NDS::ARM7MemTimings[CurInstr.CodeCycles][Thumb ? 0 : 2]
: (R15 & 0x2 ? 0 : CurInstr.CodeCycles);
MOV(32, R(ABI_PARAM4), Imm32(cycles));
if (!store)
{
SUB(32, R(RSP), regsCount < 16 ? Imm8(regsCount * 8) : Imm32(regsCount * 8));
MOV(64, R(ABI_PARAM2), R(RSP));
CALL(Num == 0
? MemoryFuncsSeq9[0][preinc]
: MemoryFuncsSeq7[0][preinc][CodeRegion == 0x02]);
for (int reg = 15; reg >= 0; reg--)
{
if (regs[reg])
{
if (usermode && reg >= 8 && reg < 15)
{
MOV(32, R(RSCRATCH2), R(RCPSR));
AND(32, R(RSCRATCH2), Imm8(0x1F));
// (RSCRATCH2 - 0x11) * 8 + squeezePointer(userModeOffsets) + (reg - 8), algebra is great!
MOVZX(32, 8, RSCRATCH2, MScaled(RSCRATCH2, SCALE_8, squeezePointer(userModeOffsets) - 0x11 * 8 + (reg - 8)));
POP(RSCRATCH);
MOV(32, MRegSum(RCPU, RSCRATCH2), R(RSCRATCH));
}
else if (RegCache.Mapping[reg] == INVALID_REG)
{
assert(reg != 15);
POP(RSCRATCH);
SaveReg(reg, RSCRATCH);
}
else
{
if (reg != 15)
RegCache.DirtyRegs |= (1 << reg);
POP(MapReg(reg).GetSimpleReg());
}
}
}
if (regs[15])
{
if (Num == 1)
OR(32, MapReg(15), Imm8(1));
Comp_JumpTo(MapReg(15).GetSimpleReg(), usermode);
}
}
else
{
for (int reg : regs)
{
if (usermode && reg >= 8 && reg < 15)
{
MOV(32, R(RSCRATCH), R(RCPSR));
AND(32, R(RSCRATCH), Imm8(0x1F));
// (RSCRATCH2 - 0x11) * 8 + squeezePointer(userModeOffsets) + (reg - 8), algebra is great!
MOVZX(32, 8, RSCRATCH, MScaled(RSCRATCH, SCALE_8, squeezePointer(userModeOffsets) - 0x11 * 8 + (reg - 8)));
MOV(32, R(RSCRATCH), MRegSum(RCPU, RSCRATCH));
PUSH(RSCRATCH);
}
else if (RegCache.Mapping[reg] == INVALID_REG)
{
LoadReg(reg, RSCRATCH);
PUSH(RSCRATCH);
}
else
PUSH(MapReg(reg).GetSimpleReg());
}
MOV(64, R(ABI_PARAM2), R(RSP));
CALL(Num == 0
? MemoryFuncsSeq9[1][preinc]
: MemoryFuncsSeq7[1][preinc][CodeRegion == 0x02]);
ADD(32, R(RSP), regsCount < 16 ? Imm8(regsCount * 8) : Imm32(regsCount * 8));
}
return (regsCount * 4) * (decrement ? -1 : 1);
}
OpArg Compiler::A_Comp_GetMemWBOffset()
{
if (!(CurInstr.Instr & (1 << 25)))
{
u32 imm = CurInstr.Instr & 0xFFF;
return Imm32(imm);
}
else
{
int op = (CurInstr.Instr >> 5) & 0x3;
int amount = (CurInstr.Instr >> 7) & 0x1F;
OpArg rm = MapReg(CurInstr.A_Reg(0));
bool carryUsed;
return Comp_RegShiftImm(op, amount, rm, false, carryUsed);
}
}
void Compiler::A_Comp_MemWB()
{
OpArg rn = MapReg(CurInstr.A_Reg(16));
OpArg rd = MapReg(CurInstr.A_Reg(12));
bool load = CurInstr.Instr & (1 << 20);
bool byte = CurInstr.Instr & (1 << 22);
int size = byte ? 8 : 32;
if (CurInstr.Instr & (1 << 24))
{
OpArg offset = A_Comp_GetMemWBOffset();
if (CurInstr.Instr & (1 << 23))
MOV_sum(32, ABI_PARAM1, rn, offset);
else
{
MOV(32, R(ABI_PARAM1), rn);
SUB(32, R(ABI_PARAM1), offset);
}
if (CurInstr.Instr & (1 << 21))
MOV(32, rn, R(ABI_PARAM1));
}
else
MOV(32, R(ABI_PARAM1), rn);
if (!(CurInstr.Instr & (1 << 24)))
{
OpArg offset = A_Comp_GetMemWBOffset();
if (CurInstr.Instr & (1 << 23))
ADD(32, rn, offset);
else
SUB(32, rn, offset);
}
Comp_MemAccess(rd, false, !load, byte ? 8 : 32);
if (load && CurInstr.A_Reg(12) == 15)
{
if (byte)
printf("!!! LDRB PC %08X\n", R15);
else
{
if (Num == 1)
AND(32, rd, Imm8(0xFE)); // immediate is sign extended
Comp_JumpTo(rd.GetSimpleReg());
}
}
}
void Compiler::A_Comp_MemHalf()
{
OpArg rn = MapReg(CurInstr.A_Reg(16));
OpArg rd = MapReg(CurInstr.A_Reg(12));
OpArg offset = CurInstr.Instr & (1 << 22)
? Imm32(CurInstr.Instr & 0xF | ((CurInstr.Instr >> 4) & 0xF0))
: MapReg(CurInstr.A_Reg(0));
int op = (CurInstr.Instr >> 5) & 0x3;
bool load = CurInstr.Instr & (1 << 20);
bool signExtend = false;
int size;
if (!load)
{
size = op == 1 ? 16 : 32;
load = op == 2;
}
else if (load)
{
size = op == 2 ? 8 : 16;
signExtend = op > 1;
}
if (size == 32 && Num == 1)
return; // NOP
if (CurInstr.Instr & (1 << 24))
{
if (CurInstr.Instr & (1 << 23))
MOV_sum(32, ABI_PARAM1, rn, offset);
else
{
MOV(32, R(ABI_PARAM1), rn);
SUB(32, R(ABI_PARAM1), offset);
}
if (CurInstr.Instr & (1 << 21))
MOV(32, rn, R(ABI_PARAM1));
}
else
MOV(32, R(ABI_PARAM1), rn);
if (!(CurInstr.Instr & (1 << 24)))
{
if (CurInstr.Instr & (1 << 23))
ADD(32, rn, offset);
else
SUB(32, rn, offset);
}
Comp_MemAccess(rd, signExtend, !load, size);
if (load && CurInstr.A_Reg(12) == 15)
printf("!!! MemHalf op PC %08X\n", R15);;
}
void Compiler::T_Comp_MemReg()
{
OpArg rd = MapReg(CurInstr.T_Reg(0));
OpArg rb = MapReg(CurInstr.T_Reg(3));
OpArg ro = MapReg(CurInstr.T_Reg(6));
int op = (CurInstr.Instr >> 10) & 0x3;
bool load = op & 0x2;
bool byte = op & 0x1;
MOV_sum(32, ABI_PARAM1, rb, ro);
Comp_MemAccess(rd, false, !load, byte ? 8 : 32);
}
void Compiler::A_Comp_LDM_STM()
{
BitSet16 regs(CurInstr.Instr & 0xFFFF);
bool load = (CurInstr.Instr >> 20) & 1;
bool pre = (CurInstr.Instr >> 24) & 1;
bool add = (CurInstr.Instr >> 23) & 1;
bool writeback = (CurInstr.Instr >> 21) & 1;
bool usermode = (CurInstr.Instr >> 22) & 1;
OpArg rn = MapReg(CurInstr.A_Reg(16));
s32 offset = Comp_MemAccessBlock(rn, regs, !load, pre, !add, false);
if (writeback)
ADD(32, rn, offset >= INT8_MIN && offset < INT8_MAX ? Imm8(offset) : Imm32(offset));
}
void Compiler::T_Comp_MemImm()
{
OpArg rd = MapReg(CurInstr.T_Reg(0));
OpArg rb = MapReg(CurInstr.T_Reg(3));
int op = (CurInstr.Instr >> 11) & 0x3;
bool load = op & 0x1;
bool byte = op & 0x2;
u32 offset = ((CurInstr.Instr >> 6) & 0x1F) * (byte ? 1 : 4);
LEA(32, ABI_PARAM1, MDisp(rb.GetSimpleReg(), offset));
Comp_MemAccess(rd, false, !load, byte ? 8 : 32);
}
void Compiler::T_Comp_MemRegHalf()
{
OpArg rd = MapReg(CurInstr.T_Reg(0));
OpArg rb = MapReg(CurInstr.T_Reg(3));
OpArg ro = MapReg(CurInstr.T_Reg(6));
int op = (CurInstr.Instr >> 10) & 0x3;
bool load = op != 0;
int size = op != 1 ? 16 : 8;
bool signExtend = op & 1;
MOV_sum(32, ABI_PARAM1, rb, ro);
Comp_MemAccess(rd, signExtend, !load, size);
}
void Compiler::T_Comp_MemImmHalf()
{
OpArg rd = MapReg(CurInstr.T_Reg(0));
OpArg rb = MapReg(CurInstr.T_Reg(3));
u32 offset = (CurInstr.Instr >> 5) & 0x3E;
bool load = CurInstr.Instr & (1 << 11);
LEA(32, ABI_PARAM1, MDisp(rb.GetSimpleReg(), offset));
Comp_MemAccess(rd, false, !load, 16);
}
void Compiler::T_Comp_LoadPCRel()
{
OpArg rd = MapReg(CurInstr.T_Reg(8));
u32 addr = (R15 & ~0x2) + ((CurInstr.Instr & 0xFF) << 2);
// hopefully this doesn't break
u32 val; CurCPU->DataRead32(addr, &val);
MOV(32, rd, Imm32(val));
}
void Compiler::T_Comp_MemSPRel()
{
u32 offset = (CurInstr.Instr & 0xFF) * 4;
OpArg rd = MapReg(CurInstr.T_Reg(8));
bool load = CurInstr.Instr & (1 << 11);
LEA(32, ABI_PARAM1, MDisp(MapReg(13).GetSimpleReg(), offset));
Comp_MemAccess(rd, false, !load, 32);
}
void Compiler::T_Comp_PUSH_POP()
{
bool load = CurInstr.Instr & (1 << 11);
BitSet16 regs(CurInstr.Instr & 0xFF);
if (CurInstr.Instr & (1 << 8))
{
if (load)
regs[15] = true;
else
regs[14] = true;
}
OpArg sp = MapReg(13);
s32 offset = Comp_MemAccessBlock(sp, regs, !load, !load, !load, false);
ADD(32, sp, Imm8(offset)); // offset will be always be in range since PUSH accesses 9 regs max
}
void Compiler::T_Comp_LDMIA_STMIA()
{
BitSet16 regs(CurInstr.Instr & 0xFF);
OpArg rb = MapReg(CurInstr.T_Reg(8));
bool load = CurInstr.Instr & (1 << 11);
s32 offset = Comp_MemAccessBlock(rb, regs, !load, false, false, false);
if (!load || !regs[CurInstr.T_Reg(8)])
ADD(32, rb, Imm8(offset));
}
}