Added FreeSurround to Externals

Also cleaned up its source code to support only 5.1 and 7.1 setups.
This commit is contained in:
LAGonauta
2017-08-09 16:55:43 -03:00
parent 950b952aee
commit 7b9375875c
15 changed files with 2834 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,310 @@
/*
Copyright (C) 2007-2010 Christian Kothe
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "FreeSurround/FreeSurroundDecoder.h"
#include "FreeSurround/ChannelMaps.h"
#include <cmath>
#undef min
#undef max
// FreeSurround implementation
// DPL2FSDecoder::Init() must be called before using the decoder.
DPL2FSDecoder::DPL2FSDecoder() {
initialized = false;
buffer_empty = true;
}
DPL2FSDecoder::~DPL2FSDecoder() {
#pragma warning(suppress : 4150)
delete forward;
#pragma warning(suppress : 4150)
delete inverse;
}
void DPL2FSDecoder::Init(channel_setup chsetup, unsigned int blsize,
unsigned int sample_rate) {
if (!initialized) {
setup = chsetup;
N = blsize;
samplerate = sample_rate;
// Initialize the parameters
wnd = std::vector<double>(N);
inbuf = std::vector<float>(3 * N);
lt = std::vector<double>(N);
rt = std::vector<double>(N);
dst = std::vector<double>(N);
lf = std::vector<cplx>(N / 2 + 1);
rf = std::vector<cplx>(N / 2 + 1);
forward = kiss_fftr_alloc(N, 0, 0, 0);
inverse = kiss_fftr_alloc(N, 1, 0, 0);
C = static_cast<unsigned int>(chn_alloc[setup].size());
// Allocate per-channel buffers
outbuf.resize((N + N / 2) * C);
signal.resize(C, std::vector<cplx>(N));
// Init the window function
for (unsigned int k = 0; k < N; k++)
wnd[k] = sqrt(0.5 * (1 - cos(2 * pi * k / N)) / N);
// set default parameters
set_circular_wrap(90);
set_shift(0);
set_depth(1);
set_focus(0);
set_center_image(1);
set_front_separation(1);
set_rear_separation(1);
set_low_cutoff(40.0f / samplerate * 2);
set_high_cutoff(90.0f / samplerate * 2);
set_bass_redirection(false);
initialized = true;
}
}
// decode a stereo chunk, produces a multichannel chunk of the same size
// (lagged)
float *DPL2FSDecoder::decode(float *input) {
if (initialized) {
// append incoming data to the end of the input buffer
memcpy(&inbuf[N], &input[0], 8 * N);
// process first and second half, overlapped
buffered_decode(&inbuf[0]);
buffered_decode(&inbuf[N]);
// shift last half of the input to the beginning (for overlapping with a
// future block)
memcpy(&inbuf[0], &inbuf[2 * N], 4 * N);
buffer_empty = false;
return &outbuf[0];
}
return 0;
}
// flush the internal buffers
void DPL2FSDecoder::flush() {
memset(&outbuf[0], 0, outbuf.size() * 4);
memset(&inbuf[0], 0, inbuf.size() * 4);
buffer_empty = true;
}
// number of samples currently held in the buffer
unsigned int DPL2FSDecoder::buffered() { return buffer_empty ? 0 : N / 2; }
// set soundfield & rendering parameters
void DPL2FSDecoder::set_circular_wrap(float v) { circular_wrap = v; }
void DPL2FSDecoder::set_shift(float v) { shift = v; }
void DPL2FSDecoder::set_depth(float v) { depth = v; }
void DPL2FSDecoder::set_focus(float v) { focus = v; }
void DPL2FSDecoder::set_center_image(float v) { center_image = v; }
void DPL2FSDecoder::set_front_separation(float v) { front_separation = v; }
void DPL2FSDecoder::set_rear_separation(float v) { rear_separation = v; }
void DPL2FSDecoder::set_low_cutoff(float v) { lo_cut = v * (N / 2); }
void DPL2FSDecoder::set_high_cutoff(float v) { hi_cut = v * (N / 2); }
void DPL2FSDecoder::set_bass_redirection(bool v) { use_lfe = v; }
// helper functions
inline float DPL2FSDecoder::sqr(double x) { return static_cast<float>(x * x); }
inline double DPL2FSDecoder::amplitude(const cplx &x) {
return sqrt(sqr(x.real()) + sqr(x.imag()));
}
inline double DPL2FSDecoder::phase(const cplx &x) {
return atan2(x.imag(), x.real());
}
inline cplx DPL2FSDecoder::polar(double a, double p) {
return cplx(a * cos(p), a * sin(p));
}
inline float DPL2FSDecoder::min(double a, double b) {
return static_cast<float>(a < b ? a : b);
}
inline float DPL2FSDecoder::max(double a, double b) {
return static_cast<float>(a > b ? a : b);
}
inline float DPL2FSDecoder::clamp(double x) { return max(-1, min(1, x)); }
inline float DPL2FSDecoder::sign(double x) {
return static_cast<float>(x < 0 ? -1 : (x > 0 ? 1 : 0));
}
// get the distance of the soundfield edge, along a given angle
inline double DPL2FSDecoder::edgedistance(double a) {
return min(sqrt(1 + sqr(tan(a))), sqrt(1 + sqr(1 / tan(a))));
}
// get the index (and fractional offset!) in a piecewise-linear channel
// allocation grid
int DPL2FSDecoder::map_to_grid(double &x) {
double gp = ((x + 1) * 0.5) * (grid_res - 1),
i = min(grid_res - 2, floor(gp));
x = gp - i;
return static_cast<int>(i);
}
// decode a block of data and overlap-add it into outbuf
void DPL2FSDecoder::buffered_decode(float *input) {
// demultiplex and apply window function
for (unsigned int k = 0; k < N; k++) {
lt[k] = wnd[k] * input[k * 2 + 0];
rt[k] = wnd[k] * input[k * 2 + 1];
}
// map into spectral domain
kiss_fftr(forward, &lt[0], (kiss_fft_cpx *)&lf[0]);
kiss_fftr(forward, &rt[0], (kiss_fft_cpx *)&rf[0]);
// compute multichannel output signal in the spectral domain
for (unsigned int f = 1; f < N / 2; f++) {
// get Lt/Rt amplitudes & phases
double ampL = amplitude(lf[f]), ampR = amplitude(rf[f]);
double phaseL = phase(lf[f]), phaseR = phase(rf[f]);
// calculate the amplitude & phase differences
double ampDiff =
clamp((ampL + ampR < epsilon) ? 0 : (ampR - ampL) / (ampR + ampL));
double phaseDiff = abs(phaseL - phaseR);
if (phaseDiff > pi)
phaseDiff = 2 * pi - phaseDiff;
// decode into x/y soundfield position
double x, y;
transform_decode(ampDiff, phaseDiff, x, y);
// add wrap control
transform_circular_wrap(x, y, circular_wrap);
// add shift control
y = clamp(y - shift);
// add depth control
y = clamp(1 - (1 - y) * depth);
// add focus control
transform_focus(x, y, focus);
// add crossfeed control
x = clamp(x *
(front_separation * (1 + y) / 2 + rear_separation * (1 - y) / 2));
// get total signal amplitude
double amp_total = sqrt(ampL * ampL + ampR * ampR);
// and total L/C/R signal phases
double phase_of[] = {
phaseL, atan2(lf[f].imag() + rf[f].imag(), lf[f].real() + rf[f].real()),
phaseR};
// compute 2d channel map indexes p/q and update x/y to fractional offsets
// in the map grid
int p = map_to_grid(x), q = map_to_grid(y);
// map position to channel volumes
for (unsigned int c = 0; c < C - 1; c++) {
// look up channel map at respective position (with bilinear
// interpolation) and build the
// signal
std::vector<float *> &a = chn_alloc[setup][c];
signal[c][f] = polar(
amp_total * ((1 - x) * (1 - y) * a[q][p] + x * (1 - y) * a[q][p + 1] +
(1 - x) * y * a[q + 1][p] + x * y * a[q + 1][p + 1]),
phase_of[1 + static_cast<int>(sign(chn_xsf[setup][c]))]);
}
// optionally redirect bass
if (use_lfe && f < hi_cut) {
// level of LFE channel according to normalized frequency
double lfe_level =
f < lo_cut ? 1
: 0.5 * (1 + cos(pi * (f - lo_cut) / (hi_cut - lo_cut)));
// assign LFE channel
signal[C - 1][f] = lfe_level * polar(amp_total, phase_of[1]);
// subtract the signal from the other channels
for (unsigned int c = 0; c < C - 1; c++)
signal[c][f] *= (1 - lfe_level);
}
}
// shift the last 2/3 to the first 2/3 of the output buffer
memcpy(&outbuf[0], &outbuf[C * N / 2], N * C * 4);
// and clear the rest
memset(&outbuf[C * N], 0, C * 4 * N / 2);
// backtransform each channel and overlap-add
for (unsigned int c = 0; c < C; c++) {
// back-transform into time domain
kiss_fftri(inverse, (kiss_fft_cpx *)&signal[c][0], &dst[0]);
// add the result to the last 2/3 of the output buffer, windowed (and
// remultiplex)
for (unsigned int k = 0; k < N; k++)
outbuf[C * (k + N / 2) + c] += static_cast<float>(wnd[k] * dst[k]);
}
}
// transform amp/phase difference space into x/y soundfield space
void DPL2FSDecoder::transform_decode(double a, double p, double &x, double &y) {
x = clamp(1.0047 * a + 0.46804 * a * p * p * p - 0.2042 * a * p * p * p * p +
0.0080586 * a * p * p * p * p * p * p * p -
0.0001526 * a * p * p * p * p * p * p * p * p * p * p -
0.073512 * a * a * a * p - 0.2499 * a * a * a * p * p * p * p +
0.016932 * a * a * a * p * p * p * p * p * p * p -
0.00027707 * a * a * a * p * p * p * p * p * p * p * p * p * p +
0.048105 * a * a * a * a * a * p * p * p * p * p * p * p -
0.0065947 * a * a * a * a * a * p * p * p * p * p * p * p * p * p *
p +
0.0016006 * a * a * a * a * a * p * p * p * p * p * p * p * p * p *
p * p -
0.0071132 * a * a * a * a * a * a * a * p * p * p * p * p * p * p *
p * p +
0.0022336 * a * a * a * a * a * a * a * p * p * p * p * p * p * p *
p * p * p * p -
0.0004804 * a * a * a * a * a * a * a * p * p * p * p * p * p * p *
p * p * p * p * p);
y = clamp(
0.98592 - 0.62237 * p + 0.077875 * p * p - 0.0026929 * p * p * p * p * p +
0.4971 * a * a * p - 0.00032124 * a * a * p * p * p * p * p * p +
9.2491e-006 * a * a * a * a * p * p * p * p * p * p * p * p * p * p +
0.051549 * a * a * a * a * a * a * a * a +
1.0727e-014 * a * a * a * a * a * a * a * a * a * a);
}
// apply a circular_wrap transformation to some position
void DPL2FSDecoder::transform_circular_wrap(double &x, double &y,
double refangle) {
if (refangle == 90)
return;
refangle = refangle * pi / 180;
double baseangle = 90 * pi / 180;
// translate into edge-normalized polar coordinates
double ang = atan2(x, y), len = sqrt(x * x + y * y);
len = len / edgedistance(ang);
// apply circular_wrap transform
if (abs(ang) < baseangle / 2)
// angle falls within the front region (to be enlarged)
ang *= refangle / baseangle;
else
// angle falls within the rear region (to be shrunken)
ang = pi - (-(((refangle - 2 * pi) * (pi - abs(ang)) * sign(ang)) /
(2 * pi - baseangle)));
// translate back into soundfield position
len = len * edgedistance(ang);
x = clamp(sin(ang) * len);
y = clamp(cos(ang) * len);
}
// apply a focus transformation to some position
void DPL2FSDecoder::transform_focus(double &x, double &y, double focus) {
if (focus == 0)
return;
// translate into edge-normalized polar coordinates
double ang = atan2(x, y),
len = clamp(sqrt(x * x + y * y) / edgedistance(ang));
// apply focus
len = focus > 0 ? 1 - pow(1 - len, 1 + focus * 20) : pow(len, 1 - focus * 20);
// back-transform into euclidian soundfield position
len = len * edgedistance(ang);
x = clamp(sin(ang) * len);
y = clamp(cos(ang) * len);
}

View File

@ -0,0 +1,444 @@
/*
Copyright (c) 2003-2010, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of
conditions and the following disclaimer in the documentation and/or other
materials provided with
the distribution.
* Neither the author nor the names of any contributors may be used to
endorse or promote
products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "FreeSurround/_KissFFTGuts.h"
/* The guts header contains all the multiplication and addition macros that are
defined for
fixed or floating point complex numbers. It also delares the kf_ internal
functions.
*/
static void kf_bfly2(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, int m) {
kiss_fft_cpx *Fout2;
kiss_fft_cpx *tw1 = st->twiddles;
kiss_fft_cpx t;
Fout2 = Fout + m;
do {
C_FIXDIV(*Fout, 2);
C_FIXDIV(*Fout2, 2);
C_MUL(t, *Fout2, *tw1);
tw1 += fstride;
C_SUB(*Fout2, *Fout, t);
C_ADDTO(*Fout, t);
++Fout2;
++Fout;
} while (--m);
}
static void kf_bfly4(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, const size_t m) {
kiss_fft_cpx *tw1, *tw2, *tw3;
kiss_fft_cpx scratch[6];
size_t k = m;
const size_t m2 = 2 * m;
const size_t m3 = 3 * m;
tw3 = tw2 = tw1 = st->twiddles;
do {
C_FIXDIV(*Fout, 4);
C_FIXDIV(Fout[m], 4);
C_FIXDIV(Fout[m2], 4);
C_FIXDIV(Fout[m3], 4);
C_MUL(scratch[0], Fout[m], *tw1);
C_MUL(scratch[1], Fout[m2], *tw2);
C_MUL(scratch[2], Fout[m3], *tw3);
C_SUB(scratch[5], *Fout, scratch[1]);
C_ADDTO(*Fout, scratch[1]);
C_ADD(scratch[3], scratch[0], scratch[2]);
C_SUB(scratch[4], scratch[0], scratch[2]);
C_SUB(Fout[m2], *Fout, scratch[3]);
tw1 += fstride;
tw2 += fstride * 2;
tw3 += fstride * 3;
C_ADDTO(*Fout, scratch[3]);
if (st->inverse) {
Fout[m].r = scratch[5].r - scratch[4].i;
Fout[m].i = scratch[5].i + scratch[4].r;
Fout[m3].r = scratch[5].r + scratch[4].i;
Fout[m3].i = scratch[5].i - scratch[4].r;
} else {
Fout[m].r = scratch[5].r + scratch[4].i;
Fout[m].i = scratch[5].i - scratch[4].r;
Fout[m3].r = scratch[5].r - scratch[4].i;
Fout[m3].i = scratch[5].i + scratch[4].r;
}
++Fout;
} while (--k);
}
static void kf_bfly3(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, size_t m) {
size_t k = m;
const size_t m2 = 2 * m;
kiss_fft_cpx *tw1, *tw2;
kiss_fft_cpx scratch[5];
kiss_fft_cpx epi3;
epi3 = st->twiddles[fstride * m];
tw1 = tw2 = st->twiddles;
do {
C_FIXDIV(*Fout, 3);
C_FIXDIV(Fout[m], 3);
C_FIXDIV(Fout[m2], 3);
C_MUL(scratch[1], Fout[m], *tw1);
C_MUL(scratch[2], Fout[m2], *tw2);
C_ADD(scratch[3], scratch[1], scratch[2]);
C_SUB(scratch[0], scratch[1], scratch[2]);
tw1 += fstride;
tw2 += fstride * 2;
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
C_MULBYSCALAR(scratch[0], epi3.i);
C_ADDTO(*Fout, scratch[3]);
Fout[m2].r = Fout[m].r + scratch[0].i;
Fout[m2].i = Fout[m].i - scratch[0].r;
Fout[m].r -= scratch[0].i;
Fout[m].i += scratch[0].r;
++Fout;
} while (--k);
}
static void kf_bfly5(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, int m) {
kiss_fft_cpx *Fout0, *Fout1, *Fout2, *Fout3, *Fout4;
int u;
kiss_fft_cpx scratch[13];
kiss_fft_cpx *twiddles = st->twiddles;
kiss_fft_cpx *tw;
kiss_fft_cpx ya, yb;
ya = twiddles[fstride * m];
yb = twiddles[fstride * 2 * m];
Fout0 = Fout;
Fout1 = Fout0 + m;
Fout2 = Fout0 + 2 * m;
Fout3 = Fout0 + 3 * m;
Fout4 = Fout0 + 4 * m;
tw = st->twiddles;
for (u = 0; u < m; ++u) {
C_FIXDIV(*Fout0, 5);
C_FIXDIV(*Fout1, 5);
C_FIXDIV(*Fout2, 5);
C_FIXDIV(*Fout3, 5);
C_FIXDIV(*Fout4, 5);
scratch[0] = *Fout0;
C_MUL(scratch[1], *Fout1, tw[u * fstride]);
C_MUL(scratch[2], *Fout2, tw[2 * u * fstride]);
C_MUL(scratch[3], *Fout3, tw[3 * u * fstride]);
C_MUL(scratch[4], *Fout4, tw[4 * u * fstride]);
C_ADD(scratch[7], scratch[1], scratch[4]);
C_SUB(scratch[10], scratch[1], scratch[4]);
C_ADD(scratch[8], scratch[2], scratch[3]);
C_SUB(scratch[9], scratch[2], scratch[3]);
Fout0->r += scratch[7].r + scratch[8].r;
Fout0->i += scratch[7].i + scratch[8].i;
scratch[5].r =
scratch[0].r + S_MUL(scratch[7].r, ya.r) + S_MUL(scratch[8].r, yb.r);
scratch[5].i =
scratch[0].i + S_MUL(scratch[7].i, ya.r) + S_MUL(scratch[8].i, yb.r);
scratch[6].r = S_MUL(scratch[10].i, ya.i) + S_MUL(scratch[9].i, yb.i);
scratch[6].i = -S_MUL(scratch[10].r, ya.i) - S_MUL(scratch[9].r, yb.i);
C_SUB(*Fout1, scratch[5], scratch[6]);
C_ADD(*Fout4, scratch[5], scratch[6]);
scratch[11].r =
scratch[0].r + S_MUL(scratch[7].r, yb.r) + S_MUL(scratch[8].r, ya.r);
scratch[11].i =
scratch[0].i + S_MUL(scratch[7].i, yb.r) + S_MUL(scratch[8].i, ya.r);
scratch[12].r = -S_MUL(scratch[10].i, yb.i) + S_MUL(scratch[9].i, ya.i);
scratch[12].i = S_MUL(scratch[10].r, yb.i) - S_MUL(scratch[9].r, ya.i);
C_ADD(*Fout2, scratch[11], scratch[12]);
C_SUB(*Fout3, scratch[11], scratch[12]);
++Fout0;
++Fout1;
++Fout2;
++Fout3;
++Fout4;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
static void kf_bfly_generic(kiss_fft_cpx *Fout, const size_t fstride,
const kiss_fft_cfg st, int m, int p) {
int u, k, q1, q;
kiss_fft_cpx *twiddles = st->twiddles;
kiss_fft_cpx t;
int Norig = st->nfft;
kiss_fft_cpx *scratch =
(kiss_fft_cpx *)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx) * p);
for (u = 0; u < m; ++u) {
k = u;
for (q1 = 0; q1 < p; ++q1) {
scratch[q1] = Fout[k];
C_FIXDIV(scratch[q1], p);
k += m;
}
k = u;
for (q1 = 0; q1 < p; ++q1) {
int twidx = 0;
Fout[k] = scratch[0];
for (q = 1; q < p; ++q) {
twidx += static_cast<int>(fstride) * k;
if (twidx >= Norig)
twidx -= Norig;
C_MUL(t, scratch[q], twiddles[twidx]);
C_ADDTO(Fout[k], t);
}
k += m;
}
}
KISS_FFT_TMP_FREE(scratch);
}
static void kf_work(kiss_fft_cpx *Fout, const kiss_fft_cpx *f,
const size_t fstride, int in_stride, int *factors,
const kiss_fft_cfg st) {
kiss_fft_cpx *Fout_beg = Fout;
const int p = *factors++; /* the radix */
const int m = *factors++; /* stage's fft length/p */
const kiss_fft_cpx *Fout_end = Fout + p * m;
#ifdef _OPENMP
// use openmp extensions at the
// top-level (not recursive)
if (fstride == 1 && p <= 5) {
int k;
// execute the p different work units in different threads
#pragma omp parallel for
for (k = 0; k < p; ++k)
kf_work(Fout + k * m, f + fstride * in_stride * k, fstride * p, in_stride,
factors, st);
// all threads have joined by this point
switch (p) {
case 2:
kf_bfly2(Fout, fstride, st, m);
break;
case 3:
kf_bfly3(Fout, fstride, st, m);
break;
case 4:
kf_bfly4(Fout, fstride, st, m);
break;
case 5:
kf_bfly5(Fout, fstride, st, m);
break;
default:
kf_bfly_generic(Fout, fstride, st, m, p);
break;
}
return;
}
#endif
if (m == 1) {
do {
*Fout = *f;
f += fstride * in_stride;
} while (++Fout != Fout_end);
} else {
do {
// recursive call:
// DFT of size m*p performed by doing
// p instances of smaller DFTs of size m,
// each one takes a decimated version of the input
kf_work(Fout, f, fstride * p, in_stride, factors, st);
f += fstride * in_stride;
} while ((Fout += m) != Fout_end);
}
Fout = Fout_beg;
// recombine the p smaller DFTs
switch (p) {
case 2:
kf_bfly2(Fout, fstride, st, m);
break;
case 3:
kf_bfly3(Fout, fstride, st, m);
break;
case 4:
kf_bfly4(Fout, fstride, st, m);
break;
case 5:
kf_bfly5(Fout, fstride, st, m);
break;
default:
kf_bfly_generic(Fout, fstride, st, m, p);
break;
}
}
/* facbuf is populated by p1,m1,p2,m2, ...
where
p[i] * m[i] = m[i-1]
m0 = n */
static void kf_factor(int n, int *facbuf) {
int p = 4;
double floor_sqrt;
floor_sqrt = floor(sqrt((double)n));
/*factor out powers of 4, powers of 2, then any remaining primes */
do {
while (n % p) {
switch (p) {
case 4:
p = 2;
break;
case 2:
p = 3;
break;
default:
p += 2;
break;
}
if (p > floor_sqrt)
p = n; /* no more factors, skip to end */
}
n /= p;
*facbuf++ = p;
*facbuf++ = n;
} while (n > 1);
}
/*
*
* User-callable function to allocate all necessary storage space for the fft.
*
* The return value is a contiguous block of memory, allocated with malloc. As
* such,
* It can be freed with free(), rather than a kiss_fft-specific function.
* */
kiss_fft_cfg kiss_fft_alloc(int nfft, int inverse_fft, void *mem,
size_t *lenmem) {
kiss_fft_cfg st = NULL;
size_t memneeded = sizeof(struct kiss_fft_state) +
sizeof(kiss_fft_cpx) * (nfft - 1); /* twiddle factors*/
if (lenmem == NULL) {
st = (kiss_fft_cfg) new char[memneeded];
} else {
if (mem != NULL && *lenmem >= memneeded)
st = (kiss_fft_cfg)mem;
*lenmem = memneeded;
}
if (st) {
int i;
st->nfft = nfft;
st->inverse = inverse_fft;
for (i = 0; i < nfft; ++i) {
const double pi =
3.141592653589793238462643383279502884197169399375105820974944;
double phase = -2 * pi * i / nfft;
if (st->inverse)
phase *= -1;
kf_cexp(st->twiddles + i, phase);
}
kf_factor(nfft, st->factors);
}
return st;
}
void kiss_fft_stride(kiss_fft_cfg st, const kiss_fft_cpx *fin,
kiss_fft_cpx *fout, int in_stride) {
if (fin == fout) {
// NOTE: this is not really an in-place FFT algorithm.
// It just performs an out-of-place FFT into a temp buffer
kiss_fft_cpx *tmpbuf =
(kiss_fft_cpx *)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx) * st->nfft);
kf_work(tmpbuf, fin, 1, in_stride, st->factors, st);
memcpy(fout, tmpbuf, sizeof(kiss_fft_cpx) * st->nfft);
KISS_FFT_TMP_FREE(tmpbuf);
} else {
kf_work(fout, fin, 1, in_stride, st->factors, st);
}
}
void kiss_fft(kiss_fft_cfg cfg, const kiss_fft_cpx *fin, kiss_fft_cpx *fout) {
kiss_fft_stride(cfg, fin, fout, 1);
}
void kiss_fft_cleanup(void) {
// nothing needed any more
}
int kiss_fft_next_fast_size(int n) {
while (1) {
int m = n;
while ((m % 2) == 0)
m /= 2;
while ((m % 3) == 0)
m /= 3;
while ((m % 5) == 0)
m /= 5;
if (m <= 1)
break; /* n is completely factorable by twos, threes, and fives */
n++;
}
return n;
}

View File

@ -0,0 +1,185 @@
/*
Copyright (c) 2003-2004, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of
conditions and the following disclaimer in the documentation and/or other
materials provided with
the distribution.
* Neither the author nor the names of any contributors may be used to
endorse or promote
products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "FreeSurround/KissFFTR.h"
#include "FreeSurround/_KissFFTGuts.h"
struct kiss_fftr_state {
kiss_fft_cfg substate;
kiss_fft_cpx *tmpbuf;
kiss_fft_cpx *super_twiddles;
#ifdef USE_SIMD
void *pad;
#endif
};
kiss_fftr_cfg kiss_fftr_alloc(int nfft, int inverse_fft, void *mem,
size_t *lenmem) {
int i;
kiss_fftr_cfg st = NULL;
size_t subsize = 65536 * 4, memneeded = 0;
if (nfft & 1) {
fprintf(stderr, "Real FFT optimization must be even.\n");
return NULL;
}
nfft >>= 1;
kiss_fft_alloc(nfft, inverse_fft, NULL, &subsize);
memneeded = sizeof(struct kiss_fftr_state) + subsize +
sizeof(kiss_fft_cpx) * (nfft * 3 / 2);
if (lenmem == NULL) {
st = (kiss_fftr_cfg) new char[memneeded];
} else {
if (*lenmem >= memneeded)
st = (kiss_fftr_cfg)mem;
*lenmem = memneeded;
}
if (!st)
return NULL;
st->substate = (kiss_fft_cfg)(st + 1); /*just beyond kiss_fftr_state struct */
st->tmpbuf = (kiss_fft_cpx *)(((char *)st->substate) + subsize);
st->super_twiddles = st->tmpbuf + nfft;
kiss_fft_alloc(nfft, inverse_fft, st->substate, &subsize);
for (i = 0; i < nfft / 2; ++i) {
double phase =
-3.14159265358979323846264338327 * ((double)(i + 1) / nfft + .5);
if (inverse_fft)
phase *= -1;
kf_cexp(st->super_twiddles + i, phase);
}
return st;
}
void kiss_fftr(kiss_fftr_cfg st, const kiss_fft_scalar *timedata,
kiss_fft_cpx *freqdata) {
/* input buffer timedata is stored row-wise */
int k, ncfft;
kiss_fft_cpx fpnk, fpk, f1k, f2k, tw, tdc;
if (st->substate->inverse) {
fprintf(stderr, "kiss fft usage error: improper alloc\n");
exit(1);
}
ncfft = st->substate->nfft;
/*perform the parallel fft of two real signals packed in real,imag*/
kiss_fft(st->substate, (const kiss_fft_cpx *)timedata, st->tmpbuf);
/* The real part of the DC element of the frequency spectrum in st->tmpbuf
* contains the sum of the even-numbered elements of the input time sequence
* The imag part is the sum of the odd-numbered elements
*
* The sum of tdc.r and tdc.i is the sum of the input time sequence.
* yielding DC of input time sequence
* The difference of tdc.r - tdc.i is the sum of the input (dot product)
* [1,-1,1,-1...
* yielding Nyquist bin of input time sequence
*/
tdc.r = st->tmpbuf[0].r;
tdc.i = st->tmpbuf[0].i;
C_FIXDIV(tdc, 2);
CHECK_OVERFLOW_OP(tdc.r, +, tdc.i);
CHECK_OVERFLOW_OP(tdc.r, -, tdc.i);
freqdata[0].r = tdc.r + tdc.i;
freqdata[ncfft].r = tdc.r - tdc.i;
#ifdef USE_SIMD
freqdata[ncfft].i = freqdata[0].i = _mm_set1_ps(0);
#else
freqdata[ncfft].i = freqdata[0].i = 0;
#endif
for (k = 1; k <= ncfft / 2; ++k) {
fpk = st->tmpbuf[k];
fpnk.r = st->tmpbuf[ncfft - k].r;
fpnk.i = -st->tmpbuf[ncfft - k].i;
C_FIXDIV(fpk, 2);
C_FIXDIV(fpnk, 2);
C_ADD(f1k, fpk, fpnk);
C_SUB(f2k, fpk, fpnk);
C_MUL(tw, f2k, st->super_twiddles[k - 1]);
freqdata[k].r = HALF_OF(f1k.r + tw.r);
freqdata[k].i = HALF_OF(f1k.i + tw.i);
freqdata[ncfft - k].r = HALF_OF(f1k.r - tw.r);
freqdata[ncfft - k].i = HALF_OF(tw.i - f1k.i);
}
}
void kiss_fftri(kiss_fftr_cfg st, const kiss_fft_cpx *freqdata,
kiss_fft_scalar *timedata) {
/* input buffer timedata is stored row-wise */
int k, ncfft;
if (st->substate->inverse == 0) {
fprintf(stderr, "kiss fft usage error: improper alloc\n");
exit(1);
}
ncfft = st->substate->nfft;
st->tmpbuf[0].r = freqdata[0].r + freqdata[ncfft].r;
st->tmpbuf[0].i = freqdata[0].r - freqdata[ncfft].r;
C_FIXDIV(st->tmpbuf[0], 2);
for (k = 1; k <= ncfft / 2; ++k) {
kiss_fft_cpx fk, fnkc, fek, fok, tmp;
fk = freqdata[k];
fnkc.r = freqdata[ncfft - k].r;
fnkc.i = -freqdata[ncfft - k].i;
C_FIXDIV(fk, 2);
C_FIXDIV(fnkc, 2);
C_ADD(fek, fk, fnkc);
C_SUB(tmp, fk, fnkc);
C_MUL(fok, tmp, st->super_twiddles[k - 1]);
C_ADD(st->tmpbuf[k], fek, fok);
C_SUB(st->tmpbuf[ncfft - k], fek, fok);
#ifdef USE_SIMD
st->tmpbuf[ncfft - k].i *= _mm_set1_ps(-1.0);
#else
st->tmpbuf[ncfft - k].i *= -1;
#endif
}
kiss_fft(st->substate, st->tmpbuf, (kiss_fft_cpx *)timedata);
}