an attempt to move docs to trunk. god tortoisesvn was an ass to do this with tortoisesvn and google code (core pdf was refused multiple times) NOTE: docs/WiiMote/Core V2.1 + EDR.pdf is still missing deu to googlecode hating me

git-svn-id: https://dolphin-emu.googlecode.com/svn/trunk@3491 8ced0084-cf51-0410-be5f-012b33b47a6e
This commit is contained in:
daco65 2009-06-18 16:07:45 +00:00
parent 5d590d5934
commit b92be31df0
36 changed files with 14366 additions and 1 deletions

View File

@ -9,7 +9,7 @@ Open Source Release under GPL 2
Project Leaders: F|RES, ector
Team members: zerofrog, vincent.hamm, falc4ever, Sonicadvance1, tmator, shuffle2, gigaherz, mthuurne, drkIIRaziel, masken, daco, XTra.KrazzY, nakeee, memberTwo.mb2, donkopunchstania, jpeterson, omegadox, lpfaint99, bushing, magumagu9, mizvekov, cooliscool, facugaich
Team members: zerofrog, vincent.hamm, falc4ever, Sonicadvance1, tmator, shuffle2, gigaherz, mthuurne, drkIIRaziel, masken, DacoTaco, XTra.KrazzY, nakeee, memberTwo.mb2, donkopunchstania, jpeterson, omegadox, lpfaint99, bushing, magumagu9, mizvekov, cooliscool, facugaich
Please read the FAQ before use: http://code.google.com/p/dolphin-emu/wiki/Facts_And_Questions

View File

@ -0,0 +1,304 @@
omments: 1
A Compendium of Gamecube Action Replay Code Types
Note: This is note a Complete code type list.
The purpose of this document is to catalogue and explain the effects of different AR code types in a clear, concise, and easy to read format. Please note that this document is not intended to explain EVERY code type, only those of interest to the amateur hacker.
It would not have been possible to write this document without Kenobi's "GCN AR CODES TYPES EXPLANATION", found at www.GSCentral.com, so a big thank-you goes to Kenobi and Parasyte for their contributions to the GCN hacking scene.
Kenobi's documentation is recommended reading as it is very complete, precise, and exact in it's explanations. However, that is also it's main flaw, it's TOO complex and technical for the casual or newbie hacker to understand. If "Address = ((0x0wXXXXXXX) AND 0x01FFFFFF) OR 0x80000000)" makes any sense to you, then I implore you to read Kenobi's guide instead. The intended audience for this document is people who'd rather have things explained in plain English.
It should be noted that every decrypted AR code has a basic two-part format that is universal to every code. The first half contains the code type and address to be written to. The second half contains the value to be written.
The Gamecube has a memory range of 80000000 - 817FFFFF (cached), or C0000000 - C17FFFFF (uncached). However for the sake of simplicity, the AR uses an offset number in the range of 00000000 - 017FFFFF. The code type identifier is an 8-bit value that is applied to the first two digits of the offset. For example, if your offset is 00012345, and you wish to perform a 32-bit write (04), you simply add (04000000) + (00012345) = 04012345.
In order to conserve space and simplicity, only the 8-bit code type identifier and particulars of the second half of the code will be explained below, as the method for procuring the first half has already been described above ;)
Terms:
8-bit - Byte - 0x12
16-bit - Halfword - 0x1234
32-bit - Word - 0x12345678
---Writes---
(00) - NNNNNNXX
8-bit write. X is the value, N is the number of times to repeat.
(02) NNNNXXXX
16-bit write. X is the value, N is the number of times to repeat.
(04) XXXXXXXX
32-bit write. X is the value.
Examples:
00006500 00000312
Will write byte 0x12 to 80006500, 80006501, 80006502, 800067503.
02006500 00011234
Will write halfword 0x1234 to 80006500, 80006502.
05006500 12345678
Will write word 0x12345678 to 81006500.
---Addition---
(80) - 000000XX
8-bit Addition. Load the byte at the address, add X to it, and save resulting byte.
(82) - 0000XXXX
16-bit Addition. Load the halfword at the address, add X to it, and save resulting halfword.
(84) - XXXXXXXX
32-bit Addition. Load the word at the address, add X to it, and save resulting word.
---Single Line Activators---
***Equal***
(08) 000000XX
8-bit Equal activator.
(0A) 0000XXXX
16-bit Equal activator.
(0C) XXXXXXXX
32-bit Equal activator.
X is the value the address must equal to activate the next line of code.
***NOT Equal***
(10) 000000XX
8-bit NOT Equal activator.
(12) 0000XXXX
16-bit NOT Equal activator.
(14) XXXXXXXX
32-bit NOT Equal activator.
If the value stored at the address is not equal to X, activate the next line of code.
***If Lower (signed)***
(18) 000000XX
8-bit If Lower (signed) activator.
(1A) 0000XXXX
16-bit If Lower (signed) activator.
(1C) XXXXXXXX
32-bit If Lower (signed) activator.
If the value stored at the address is lower than X, activate the next line of code.
***If Higher (signed)***
(20) 000000XX
8-bit If Higher (signed) activator.
(22) 0000XXXX
16-bit If Higher (signed) activator.
(24) XXXXXXXX
32-bit If Higher (signed) activator.
If the value stored at the address is higher than X, activate the next line of code.
***If Lower (unsigned)***
(28) 000000XX
8-bit If Lower (unsigned) activator.
(2A) 0000XXXX
16-bit If Lower (unsigned) activator.
(2C) XXXXXXXX
32-bit If Lower (unsigned) activator.
If the value stored at the address is lower than X, activate the next line of code.
***If Higher (unsigned)***
(30) 000000XX
8-bit If Higher (unsigned) activator.
(32) 0000XXXX
16-bit If Higher (unsigned) activator.
(34) XXXXXXXX
32-bit If Higher (unsigned) activator.
If the value stored at the address is higher than X, activate the next line of code.
---Double Line Activators---
***Equal***
(48) 000000XX
8-bit activator.
(4A) 0000XXXX
16-bit activator.
(4C) XXXXXXXX
32-bit activator.
X is the value the address must equal to activate the next two lines of code.
***NOT Equal***
(50) 000000XX
8-bit NOT Equal activator.
(52) 0000XXXX
16-bit NOT Equal activator.
(54) XXXXXXXX
32-bit NOT Equal activator.
If the value stored at the address is not equal to X, activate the next two lines of code.
***If Lower (signed)***
(58) 000000XX
8-bit If Lower (signed) activator.
(5A) 0000XXXX
16-bit If Lower (signed) activator.
(5C) XXXXXXXX
32-bit If Lower (signed) activator.
If the value stored at the address is lower than X, activate the next two lines of code.
***If Higher (signed)***
(60) 000000XX
8-bit If Higher (signed) activator.
(62) 0000XXXX
16-bit If Higher (signed) activator.
(64) XXXXXXXX
32-bit If Higher (signed) activator.
If the value stored at the address is higher than X, activate the next two lines of code.
***If Lower (unsigned)***
(68) 000000XX
8-bit If Lower (unsigned) activator.
(6A) 0000XXXX
16-bit If Lower (unsigned) activator.
(6C) XXXXXXXX
32-bit If Lower (unsigned) activator.
If the value stored at the address is lower than X, activate the next two lines of code.
***If Higher (unsigned)***
(70) 000000XX
8-bit If Higher (unsigned) activator.
(72) 0000XXXX
16-bit If Higher (unsigned) activator.
(74) XXXXXXXX
32-bit If Higher (unsigned) activator.
If the value stored at the address is higher than X, activate the next two lines of code.
---Multi-Line Activators---
Note that all multi-line codes must end with the line 00000000 40000000.
***Equal***
(88) 000000XX
8-bit activator.
(8A) 0000XXXX
16-bit activator.
(8C) XXXXXXXX
32-bit activator.
X is the value the address must equal to activate the next lines of code.
***NOT Equal***
(90) 000000XX
8-bit NOT Equal activator.
(92) 0000XXXX
16-bit NOT Equal activator.
(94) XXXXXXXX
32-bit NOT Equal activator.
If the value stored at the address is not equal to X, activate the next lines of code.
***If Lower (signed)***
(98) 000000XX
8-bit If Lower (signed) activator.
(9A) 0000XXXX
16-bit If Lower (signed) activator.
(9C) XXXXXXXX
32-bit If Lower (signed) activator.
If the value stored at the address is lower than X, activate the next lines of code.
***If Higher (signed)***
(A0) 000000XX
8-bit If Higher (signed) activator.
(A2) 0000XXXX
16-bit If Higher (signed) activator.
(A4) XXXXXXXX
32-bit If Higher (signed) activator.
If the value stored at the address is higher than X, activate the next lines of code.
***If Lower (unsigned)***
(A8) 000000XX
8-bit If Lower (unsigned) activator.
(AA) 0000XXXX
16-bit If Lower (unsigned) activator.
(AC) XXXXXXXX
32-bit If Lower (unsigned) activator.
If the value stored at the address is lower than X, activate the next lines of code.
***If Higher (unsigned)***
(B0) 000000XX
8-bit If Higher (unsigned) activator.
(B2) 0000XXXX
16-bit If Higher (unsigned) activator.
(B4) XXXXXXXX
32-bit If Higher (unsigned) activator.
If the value stored at the address is higher than X, activate the next lines of code.
---Alignment---
Codes must be properly aligned depending on the type of code.
8-bit codes can be used on ANY address.
16-bit codes must have an address that is a multiple of 2: 0,2,4,6,8,A,C,E.
32-bit codes must have an address that is a multiple of 4:0,4,8,C.
If codes aren't aligned, they may not work, or may cause your AR to spaz out and kill your cat (R.I.P. Snowball).
---Signed & Unsigned Numbers---
Unsigned means :
For 8-bits : 0x00 -> 0xFF = 0 to 255.
For 16-bits: 0x0000 -> 0xFFFF = 0 to 65535.
For 32-bits: 0x00000000 -> 0xFFFFFFFF = 0 to 4294967295.
Signed means :
For 8-bits : 0x00 -> 0x7F = 0 to 127.
0x80 -> 0xFF = -127 to -1.
For 16-bits: 0x0000 -> 0x7FFF = 0 to 32767.
0x8000 -> 0xFFFF = -32768 to -1.
For 32-bits: 0x00000000 -> 0x7FFFFFFF = 0 to 2147483647.
0x80000000 -> 0xFFFFFFFF = -2147483648 to -1.

View File

@ -0,0 +1,955 @@
--------------------------------
GCN AR CODES TYPES EXPLANATION
--------------------------------
v1.1 by kenobi
History :
v1.1 : Removed the 'NCT' codes types.
Added 'Byte Copy', 'Pointer Mod' and 'AND/OR' codes type.
Added some notes about the (m) codes, the 'write to CCxxxxxx' code.
Fixed some typos.
v1.0 : Initial release.
Special thanks to Parasyte for his help/informations about some codes types.
This document has been written for educational purpose.
It may help you create codes for the GCN AR, or they might be useless
junk... Your call !
If you know the GBA's ARv3 codes types, you'll find the GCN AR codes types
quite similar...
Also note that the PS2's AR MAX codes types are very close to the GCN ones.
Warning : This document is meant for advanced codes creators, NOT FOR
NEWBIES OR WANNABES. Sorry.
*************** If you are an experienced, known (by me or gscentral
admins) code hacker, and you don't
understand this document, you may try to ask help using the
www.gscentral.com forums
(or PM me there).
Special Note 1 : All adresses MUST be compatible with the data size you want
the codes are using.
*************** That means : -ANY address can be used for BYTE
reading/writing.
-Address MUST be a multiple of 2 for HALFWORD
reading/writing.
(Last hex number of the address must be either
:0,2,4,6,8,A,C,E)
-Address MUST be a multiple of 4 for WORD
reading/writing.
(Last hex number of the address must be either
:0,4,8,C)
If you don't follow this rule, the codes won't work (or the
AR might crash)...!
Special Note 2 : All codes are formatted like that : XXXXXXXX YYYYYYYY.
I called ADDRESS (in caps) the XXXXXXXX, and VALUE (in
caps) the YYYYYYYY.
Special Note 3 : GCN memory range is 0x80000000 - 0x817FFFFF cached, and
0xC0000000 - 0xC17FFFFF uncached.
(don't ask what it means, I don't get it either :P).
The codes will usualy write to the cached area.
Special Note 4 : The codes type numbers I give after a code name is a number
created like this:
For "Type zX" codes , the number X is :
AAA (3 most significant bits of the code's "VALUE")
For normal codes, the number in parenthesis after the name
of the code is :
AAABBCC (7 most significant bits of the code's
"ADDRESS")
AAA : type bits.
BB : subtype bits.
CC : value bits.
You can use them as reference, or just ignore them...
Special Note 5 : Any "unused" data could be filled with random numbers to
create a "unique encryption",
which could "sign" your codes. I randomly explained how it
works. It might not work
with every code. This feature isn't really interessing, but
I felt like it should be
noticed.
Special Note 6 : "Register 1BB4" is one of the register (= a given place in
the NGC memory) that the AR
uses to store some data while executing codes.
Special Note 7 : The addresses, values, and all the numbers starting by
"0x", or having the letter(s)
A, B, C, D, E and/or F in them are Hexadecimal numbers. If
you don't know what hexadecimal
is, make a search in Google.
Special Note 8 : If you don't know C/C++, be aware that "<<" means "Shift
left", and ">>" "Shift right".
"Shift left" is the "Lsh" button of the Windows calculator
(in "Scientific" mode).
"Shift right" is gotten by clicking the "Inv" checkbox,
then the "Lsh" button of the
Windows calculator (in "Scientific" mode).
________________
----------------
| Type z Codes |
----------------
"Type z" are codes which have an ADDRESS eqal to 00000000 ("z" stands for
"zero").
For any "Type zX" codes : X = code type = (VALUE >> 29) AND 0x07.
(If X>4, the code will be skipped)
-------------------------------
// Type "z0" : END OF CODES //
-------------------------------
1 line code.
00000000 00000000
It means "end of the code" (or "no more codes are executed").
The AR will "give" back the hand to the game, and then will start execute
codes
from the very 1st of the list.
--------------------------------------------
// Type "z2" : Normal execution of codes //
--------------------------------------------
1 line code.
00000000 40000000
Set register 1BB4 to 0.
It means that the AR goes back to the normal execution of codes.
(And it should break a "stop executing codes", set when register 1BB4 is =
2).
-----------------------------------------------------
// Type "z3" : Executes all codes in the same row //
-----------------------------------------------------
1 line code.
00000000 60000000
Set register 1BB4 to 1.
It means the AR will execute all the codes, without giving back the hand to
the
game, unless register 1BB4 changes value (with a "z2" code for exemple).
-------------------------------
// Type "z4" : Fill & Slide //
-------------------------------
2 lines code.
00000000 8XXXXXXX
Y1Y2Y3Y4 Z1Z2Z3Z4
Address = 8XXXXXXX AND 0x81FFFFFF.
Size = (address >> 25) AND 0x03.
(Size 0 = 8bits, Size 1 = 16 bits, Size 2 = 32 bits. Size 3 = Unused)
Value = Y1Y2Y3Y4.
Address increment = 0000Z3Z4 if (Z1 >> 3 = 0).
= FFFFZ3Z4 if (Z1 >> 3 = 1).
NOTE : When using halfword (or word), make address increment >> 1 (or >> 2)
when
computing the code.
Value increment = 00000000Z1 if (Z1 >> 3 = 0).
= FFFFFFFFZ1 if (Z1 >> 3 = 1).
Number of values to write = Z2.
NOTE : If Z2 = 0, nothing will be written (it'll be like the code isn't
executed).
Small note :
------------
As the sign of the address increment and the value increment are shared, you
MUST start
from the 1st address when using a positive value increment, and start from
the last address
when using a negative value increment.
------------------------------------------
// Type "z4 - Size 3" : Memory Copy //
------------------------------------------
These codes were 'created' by me (kenobi).
The only way to use them is to enter and enable the 'Enablers' codes.
You also HAVE TO add the Master Code flag to these Enabler codes'
indentifier
(or to include it into the (m) code), else they won't work properly.
Finally, the 'Enabler' codes and the actual codes must be entered
separately.
They should work on ANY AR (at least up to version 1.14b).
A - Memory Copy Without Pointer Support :
-----------------------------------------
Enabler (must be on!) :
04001E48 48000769
040025B0 5525043E
040025B4 4BFFF644
Exemple of byte copy :
00000000 86393FA8
80393FA0 00000001
Here is how it works :
00000000 8XXXXXXX
YYYYYYYY 0000ZZZZ
8XXXXXXX = [Destination address] OR 0x06000000.
YYYYYYYY = [Source address].
ZZZZ = number of bytes to copy (0x0000 will copy 0 byte, 0xFFFF will copy
65535 bytes).
Important : the 16-bits number before ZZZZ MUST BE '0000', else it'll create
errors !!!
So, if you follow what I explained, you can see that my code exemple will
copy 2 bytes,
from 80393FA0 to 80393FA8.
B - Memory Copy With Pointers Support :
---------------------------------------
Enabler (must be on!) :
04001E48 48000769
040025B0 5525043E
040025B4 2C060000
040025B8 4182000C
040025BC 80630000
040025C0 80840000
040025C4 4BFFF634
With this code, if you put any data in the 8 upper bits of the value, the AR
will use
the addresses in the code as pointers addresses
Exemple :
00000000 86002F04
80002F00 01000138
Important : the 8-bits number before ZZZZ MUST BE '00', else it'll create
errors !!!
As the value start with '01' (could have been anything, but '00'), the AR
will load
the 32bits value at 80002F00 and use it as the source address, then load the
32bits
value at 80002F04 and use it as the destination address, and finally will
copy 138 bytes
from the source address to the destination address.
Note that if you put '00' in the start of the value, the code will work just
like
the 'Memory Copy Without Pointer Support' code.
If you need to add an offset to the pointer addresses, you'll have to do
this trick :
copy the source pointer address to 80002F00, the destination pointer address
to 80002F04,
add the offset values to theses pointer addresses (using the 'Add' code
type), and finally
use the 'Memory Copy with Pointers Support' to copy the bytes.
Exemple :
00000000 86002F00 <- Copy the 32bits (=4 bytes) source pointer address
804C8268 00000004 from 804C8268 to 80002F00.
00000000 86002F04 <- Copy the 32bits (=4 bytes) destination pointer address
804C8268 00000004 from 804C8268 to 80002F04.
84002F00 00000098 <- Add the offset 0x98 to the source pointer address at
80002F00.
84002F04 000001D0 <- Add the offset 0x1D0 to the source pointer address at
80002F04.
4A44F0A8 00000030 <- (if the user press R+Z...).
00000000 86002F04 <- Copy 0x138 bytes from the address stored at 80002F00
(=pointer address+0x98)
80002F00 01000138 to the address stored at 80002F04 (=pointer address +
0x1D0).
________________
----------------
| Normal Codes |
----------------
For any "Normal Codes", you have :
SubType = (ADDRESS >> 30) AND 0x03.
Type = (ADDRESS >> 27) AND 0x07.
Size = (ADDRESS >> 25) AND 0x03.
(usually, Size 0 = 8bits, Size 1 = 16 bits, Size 2 = 32 bits.
For some codes, Size 3 = Floating point single precision)
------------
// Type 0 //
------------
--------------------------------------
// SubType 0 : Ram write (and fill) // (can be called "00", "01" and "02")
--------------------------------------
1 line code.
0.0.x
-----
0wXXXXXX Y1Y2Y3Y4
(w < 8!)
Address = ((0x0wXXXXXXX) AND 0x01FFFFFF) OR 0x80000000).
Size = (address >> 25) AND 0x03.
If Size = 0 [00] :
fills area [Address ; Address + Y1Y2Y3] with value Y4.
If Size = 1 [02] :
fills area [Address ; Address + (Y1Y2 << 1)] with value Y3Y4.
If Size = 2 [04] :
writes word Y1Y2Y3Y4 to Address.
Examples :
00023000 00000312
will write byte 0x12 to 80023000, 80023001, 80023002, 80023003.
02023000 00011234
will write halfword 0x1234 to 80023000, 80023002.
05023000 12345678
will write halfword 0x12345678 to 81023000.
-------------------------------
// SubType 1 : Write to pointer (can be called "04", "05" and "06")
-------------------------------
1 line code.
0.1.x
-----
1 line code.
4wXXXXXX Y1Y2Y3Y4
(w < 8!)
Address = ((0x4wXXXXXX) AND 0x01FFFFFF) OR 0x80000000.
Size = (Address >> 25) AND 0x03.
Pointer Address = [Word stored at Address].
This code will make the AR load the word stored at the address provided in
the code,
(also called the "Pointer Address"), and check if it's a valid address (ie.
if it's in
the [80000000~81800000[ range). It it is one, it will add an offset to it,
and it will
write the data provided in the code to this new address.
If Size = 0 [40] :
AR will write the byte Y4 at [Pointer Address + Y1Y2Y3].
If Size = 1 [42] :
AR will write the halfword Y3Y4 at [Pointer Address + (Y1Y2 << 1)].
If Size = 2 [44] :
AR will write the word Y1Y2Y3Y4 at [Pointer Address].
REMOVE THE 'VALID ADDRESS' CHECK, AKA 'POINTER MOD' :
-----------------------------------------------------
This code was 'created' by me (kenobi).
The only way to use it is to enter and enable the 'Enabler' code.
You also HAVE TO add the Master Code flag to these Enabler codes'
indentifier
(or to include it into the (m) code), else they won't work properly.
Finally, the 'Enabler' codes and the actual codes must be entered
separately.
It should work on ANY AR (at least up to version 1.14b).
Enabler (must be on) :
04001FA4 48000014
Once you use this code, the 'Write to Pointer' code will stop checking if
the address you
point to is a valid address.
That means that you can write to virtual memory without a TLB (m) code, but
you have to make
sure that the address the pointer code reads is a valid address (else, it'll
crash).
Exemple (courtesy of donny2112) :
04002F0C 7FC39C9C
42002F0C 00010000
42002F0C 03ED0000
42002F0C 04F70000
42002F0C 05BB0000
The first line will write '7FC39C9C' to 80002F0C.
Then, the other lines will write 0x0000 to 0x7FC39C9C+2*1,
0x7FC39C9C+2*0x3ED, 0x7FC39C9C+2*0x4F7,
and finally 0x7FC39C9C+2*0x5BB.
The advantage of this code, over a TLB (m) code, is that it only needs a 1
lines enabler, it is
compatible with all games and all ARs, and it allows you to use 8/16/32bits
ram write.
The downside is that if you point to an invalid address, the GC will just
crash.
If you're not sure that you'll point to a valid address, you can use this
combinaison of code to check
it manually (in this exemple, I make sure that the address is in the
0x80000000~817F0000 range) :
74XXXXXX 80000000 <- If value > 0x80000000
2CXXXXXX 81800000 <- and If value < 0x81800000
44XXXXXX Y1Y2Y3Y4 <- then execute this pointer code.
XXXXXXXX being the address where the Pointer Address is stored.
-----------------------
// SubType 2 : Add code (can be called "08", "09" and "0A")
-----------------------
1 line code.
0.2.x
-----
1 line code.
8wXXXXXX Y1Y2Y3Y4
(w < 8!)
Address = (0x8wXXXXXX AND 0x81FFFFFF).
Size = (Address >> 25) AND 0x03.
if Size = 0 [80] :
Loads byte stored at [Address], adds Y1Y2Y3Y4 to it, and stores the
resulting byte
(= result AND 0xFF) at [Address].
if Size = 1 [82] :
Loads halfword stored at [Address], adds Y1Y2Y3Y4 to it, and stores the
resulting halfword
(= result AND 0xFFFF) at [Address].
if Size = 2 [84] :
Loads word stored at [Address], adds Y1Y2Y3Y4 to it, and stores the result
at [Address].
if Size = 3 [86] :
Loads floating value stored at [Address], adds Y1Y2Y3Y4 (must be a
floating point single precision value)
to it, and stores the result at [Address].
Change ADD to AND :
------------------
This code was 'created' by me (kenobi).
The only way to use it is to enter and enable the 'Enabler' code.
You also HAVE TO add the Master Code flag to these Enabler codes'
indentifier
(or to include it into the (m) code), else they won't work properly.
Finally, the 'Enabler' codes and the actual codes must be entered
separately.
This change is definitive (until you reboot the Game) :
Enable 8-bits AND :
0400200C 7C002038
Enable 16-bits AND :
0400201C 7C002038
Enable 32-bits AND :
0400202C 7C002038
Enable 8~32bits AND :
00000000 8400200C
7C002038 00030004
Change ADD to OR :
------------------
This code was 'created' by me (kenobi).
The only way to use it is to enter and enable the 'Enabler' code.
You also HAVE TO add the Master Code flag to these Enabler codes'
indentifier
(or to include it into the (m) code), else they won't work properly.
Finally, the 'Enabler' codes and the actual codes must be entered
separately.
This change is definitive (until you reboot the Game) :
Enable 8-bits OR :
0400200C 7C002378
Enable 16-bits OR :
0400201C 7C002378
Enable 32-bits OR :
0400202C 7C002378
Enable 8~32bits OR :
00000000 8400200C
7C002378 00030004
Note : you can't mix 'ADD', 'AND' and 'OR' codes for the same code type
(8/16/32bits).
----------------------------------------------
// SubType 3 : Master Code & Write to CCXXXXXX (can be called "0E" and "0F")
----------------------------------------------
1 line code.
0.3.x
-----
1 line code.
CwXXXXXX Y1Y2Y3Y4
(w < 8!)
Address = ((0x6wXXXXXX) AND 0x01FFFFFF) OR 0x80000000).
Size = (Address >> 25) AND 0x03.
If Size = 2 (0.3.2) : Master Code (C4XXXXXX Y1Y2Y3Y4)
-----------------------------------------------------
Y4 = Master Code Number.
0x00 : executed only once, just before the game bootup.
Only one (m) code can have the '00' number (the others will be
skipped),
and it must be the very one in the (m) code list (else it'll be
skipped).
0x01~0x0F : executed continuously during the game execution.
(2 (or more) master codes that have the same Master Code
Number can't
be executed correctly if they are put one just after
another.
Only the first one will be executed, the other(s) will be
skipped).
Y3 = number of codes to execute each time the AR "has the hand".
Y2 AND 0x03 = Master Code Type :
Type 0 : create a branch to SUBROUTINE 1.
(Save : R0 R3 R28 R29 R30 R31)
Type 1 : backup 4 asm lines from the game, and write a Branch to MAIN
ROUTINE.
(Save : R3 R28 R29 R30 R31, Destroys : R0?)
Type 2 : create a branch to 1 copy of SUBROUTINE 1.
(Save : R0 R3 R28 R29 R30 R31)
Type 3 : create a branch to MAIN ROUTINE START (will execute the 4 asm lines
backed up
in Type 1, if any).
(Save : R0 R3 R28 R29 R30 R31)
Note : Putting random numbers in Y1 should change the encryption, thus
"signing" your
code (untested).
Note : Don't use the Type 1 alone with a Master Code Number >0, else the AR
will backup its own
hook, and enter an infinite loop. So put a conditional code type make
that this code isn't
executed more than once.
If (Size = 3) AND ((address AND 0x01FFFFFF ) < 0x01000000) (0.3.3):
-------------------------------------------------------------------
Write halfword to CCXXXXXX (C6XXXXXX Y1Y2Y3Y4)
----------------------------------------------
Address = 0xCCXXXXXX
Stores the halfword Y3Y4 at Address.
Note : Putting random numbers in Y1Y2 should change the encryption, thus
"signing" your
code (untested).
If (Size = 3) AND ((address AND 0x01FFFFFF ) >= 0x01000000) (0.3.3):
--------------------------------------------------------------------
Write word to CDXXXXXX (C7XXXXXX Y1Y2Y3Y4)
------------------------------------------
Address = 0xCDXXXXXX
Stores the word Y1Y2Y3Y4 at Address.
Note : Parasyte informed me that writing to 0xCDXXXXXX doesn't makes any
sense, and he thinks
it might be some kind of AR bug...
**************************************************
* NOTES FOR ALL CONDITIONAL CODES (TYPE 1 TO 7). *
**************************************************
All the Conditional Codes are 1 line code, but you "need" to add another
line to make them work.
Conditional Code are used to trigger the next code(s) when an event happens,
for exemple give the
player 99 lifes when buttons L+R are pushed, or make the life becomes full
when it reaches 50%
of its value...
They all come in 3 "flavors" : 8, 16 and 32 bits. You select it by changing
the size data in the code.
Reminder : Size = (Address >> 25) AND 0x03
For all the Conditional Codes, you first take the value of the IN GAME data,
and compare it to
the value provided in the CODE data. The result, which should be read as
'True' (or 'False'), will
tell if the Conditional Code will activate the next codes.
Anyway, Conditional Codes should be used by advanced code makers.
And don't ask for the "paddle" values, they seem to change for every game...
So find them yourself :-)
The number I give as exemples has been made using BYTE size :
08XXXXXX YYYYYY is the "If equal execute next code" generic value for a BYTE
comparison.
For halfwords, it'll be 0AXXXXXX YYYYYYYY, and for words 0CXXXXXX
YYYYYYYY...
--------------------------
// Type 1 : If equal... // (can be called "10", "11" and "12")
--------------------------
1.y.x
-----
08XXXXXX YYYYYYYY
(w >= 8!)
Subtype 0 [08] : If equal, execute next line (else skip next line).
Subtype 1 [48] : If equal, execute next 2 lines (else skip next 2 lines).
Sybtype 2 [88] : If equal, execute all the codes below this one in the same
row (else execute
none of the codes below).
Subtype 3 [C8] : While NOT EQUAL,turn off all codes (infinite loop on the
code).
------------------------------
// Type 2 : If NOT equal... // (can be called "20", "21" and "22")
------------------------------
2.y.x
-----
10XXXXXX YYYYYYYY
Subtype 0 [10] : If NOT equal, execute next line (else skip next line).
Subtype 1 [50] : If NOT equal, execute next 2 lines (else skip next 2
lines).
Sybtype 2 [90] : If NOT equal, execute all the codes below this one in the
same row (else execute
none of the codes below).
Subtype 3 [D0] : While EQUAL, turn off all codes (infinite loop on the
code).
------------------------------------
// Type 3 : If lower... (signed) // (can be called "30", "31" and "32")
------------------------------------
Signed means :
For Bytes : values go from -128 to +127.
For Halfword : values go from -32768/+32767.
For Words : values go from -2147483648 to 2147483647.
For exemple, for the Byte comparison, 7F (127) will be > to FFFFFFFF (-1).
You HAVE to enter a 32bits signed number as value, even if you just want to
make an halfword
comparison. That's because 0000FFFF = 65535, and FFFFFFFF = -1).
You could choose any value (for exemple, +65536 for halfword code, but the
result will be always True
(or always False if you choose -65537...).
3.y.x
-----
18XXXXXX YYYYYYYY
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING *
WARNING * WARNING *
If you used a "byte" size, this Type 3 code will actually be a "If lower...
(UNSIGNED)" !
That means, no signed comparison for byte values !!! (AR bug?)
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING *
WARNING * WARNING *
Subtype 0 [18] : If lower, execute next line (else skip next line).
Subtype 1 [58] : If lower, execute next 2 lines (else skip next 2 lines).
Sybtype 2 [98] : If lower, execute all the codes below this one in the same
row (else execute
none of the codes below).
Subtype 3 [D8] : While higher, turn off all codes (infinite loop on the
code).
Note 1 : For 8 and 16 bits codes, you *could* fill the unused numbers in the
Value to change
the encrypted code, and "sign" them (unverified).
------------------------------------
// Type 4 : If higher... (signed) // (can be called "40", "41" and "42")
------------------------------------
Signed means :
For Bytes : values go from -128 to +127.
For Halfword : values go from -32768/+32767.
For Words : values go from -2147483648 to 2147483647.
For exemple, for the Byte comparison, 7F (127) will be > to FFFFFFFF (-1).
You HAVE to enter a 32bits signed number as value, even if you just want to
make an halfword
comparison. That's because 0000FFFF = 65535, and FFFFFFFF = -1).
You could choose any value (for exemple, +65536 for halfword code, but the
result will be always True
(or always False if you choose -65537...).
4.y.x
-----
20XXXXXX YYYYYYYY
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING *
WARNING * WARNING *
If you used a "byte" size, this Type 4 code will actually be a "If lower...
(UNSIGNED)" !
That means, no signed comparison for byte values !!! (AR bug?)
* WARNING * WARNING * WARNING * WARNING * WARNING * WARNING * WARNING *
WARNING * WARNING *
Subtype 0 [20] : If higher, execute next line (else skip next line).
Subtype 1 [60] : If higher, execute next 2 lines (else skip next 2 lines).
Sybtype 2 [A0] : If higher, execute all the codes below this one in the same
row (else execute
none of the codes below).
Subtype 3 [E0] : While lower, turn off all codes (infinite loop on the
code).
Note 1 : For 8 and 16 bits codes, you *could* fill the unused numbers in the
Value to change
the encrypted code, and "sign" them (unverified).
-------------------------------------
// Type 5 : If lower... (unsigned) // (can be called "50", "51" and "52")
-------------------------------------
Unsigned means :
For Bytes : values go from 0 to +255.
For Halfword : values go from 0 to +65535.
For Words : values go from 0 to 4294967295.
For exemple, for the Byte comparison, 7F (127) will be < to FF (255).
5.y.x
-----
28XXXXXX YYYYYYYY
Subtype 0 [28] : If lower, execute next line (else skip next line).
Subtype 1 [68] : If lower, execute next 2 lines (else skip next 2 lines).
Sybtype 2 [A8] : If lower, execute all the codes below this one in the same
row (else execute
none of the codes below).
Subtype 3 [E8] : While higher, turn off all codes (infinite loop on the
code).
--------------------------------------
// Type 6 : If higher... (unsigned) // (can be called "60", "61" and "62")
--------------------------------------
Unsigned means :
For Bytes : values go from 0 to +255.
For Halfword : values go from 0 to +65535.
For Words : values go from 0 to 4294967295.
For exemple, for the Byte comparison, 7F (127) will be < to FF (255).
6.y.x
-----
30XXXXXX YYYYYYYY
Subtype 0 [30] : If higher, execute next line (else skip next line).
Subtype 1 [70] : If higher, execute next 2 lines (else skip next 2 lines).
Sybtype 2 [B0] : If higher, execute all the codes below this one in the same
row (else execute
none of the codes below).
Subtype 3 [F0] : While lower, turn off all codes (infinite loop on the
code).
------------------------
// Type 7 : If AND... // (can be called "70", "71" and "72")
------------------------
(if the result of ANDing the IN GAME and IN CODE values is <>0)
7.y.x
-----
38XXXXXX YYYYYYYY
Subtype 0 [38] : If AND, execute next line (else skip next line).
Subtype 1 [78] : If AND, execute next 2 lines (else skip next 2 lines).
Sybtype 2 [B8] : If AND, execute all the codes below this one in the same
row (else execute
none of the codes below).
Subtype 3 [F8] : While NOT AND, turn off all codes (infinite loop on the
code).
* THE END *

213
docs/DSP/AX.c Normal file
View File

@ -0,0 +1,213 @@
//
// Pseudo C
//
//
// DSP:
//
// Memory USAGE
0x0B80 to 0x0C40 CurrentPB
0x0B87
0x0E15 SrcSelectFunction // perhaps CMD0 setups some kind of jmp table at this addresses
0x0E16 CoefFunction
0x0E14 MixCtrlFunction
0x0e17 TmpBuffer exceptions
0x0e18 TmpBuffer exceptions
0x0e19 TmpBuffer exceptions
// instrcution memory
0x0B31 to 0x0B33 some kind of JMP-Table to handle srcSelect ???
0x0B34 to 0x0B36 some kind of JMP-Table to handle coefSelect ???
0x0B11 to 0x0B1F some kind of JMP-Table to handle mixerCtrl ???
void CMD2()
{
// 0x1BC
int_addrPB = (*r00 << 16) | *(r00+1)
DMA_From_Memory(0x0B80, _addrPB, 0xC0); // read first PB to 0x0B80
// 0x1C7
*0x0E08 = 0x0000
*0x0E09 = 0x0140
*0x0E0A = 0x0280
*0x0E0B = 0x0400
*0x0E0C = 0x0540
*0x0E0D = 0x0680
*0x0E0E = 0x07C0
*0x0E0F = 0x0900
*0x0E10 = 0x0A40
// 0x1E4
WaitForDMATransfer()
// 0x1E6
Addr = (*0x0BA7 << 16) | *0x0BA8
DMA_From_Memory(0x03C0, Addr, 0x80); // Copy Update Data to 0x03C0 (AXPBUPDATE dataHi, dataLo)
// 0x1F4
R03 = (*0x0B84) + 0x0B31 // AXPB->srcSelect + 0x0B31 ??? some kind of flag handling ??? SRCSEL can be 0x0 to 0x2
AC0.M = *R03
*0x0E15 = *AC0.M
// 0x1FD
R03 = (*0x0B85) + 0x0B34 // AXPB->coefSelect + 0x0B34 ??? some kind of flag handling ??? COEF can be 0x0 to 0x2
AC0.M = *R03
*0x0E16 = *AC0.M
// 0x206
R03 = (*0x0B86) + 0x0B11 // AXPB->mixerCtrl + 0x0B36 ??? some kind of flag handling ??? MIXCTRL can be 0x0 to 0xE
AC0.M = *R03
*0x0E14 = *AC0.M
// 0x20F
if (*0x0B9B == 0) // AXPBITD->flag (on or off for this voice)
{
// jmp to 0x23a
*0x0E42 = 0x0CE0
*0x0E40 = 0x0CE0
*0x0E41 = 0x0CE0
*0x0E43 = 0x0CE0
WaitForDMATransfer()
}
else
{
// code at 0x216
*0x0E40 = *0x0B9E + 0x0CC0 // AXPBITD->shiftL
*0x0E41 = *0x0B9F + 0x0CC0 // AXPBITD->shiftR
*0x0E42 = 0xCE0
*0x0E43 = 0xCE0
WaitForDMATransfer()
// 0x22a
Addr = (*0x0B9C << 16) | *0x0B9D
DMA_From_Memory(0x0CC0, Addr, 0x40); // (AXPBITD->bufferHi << 16 | AXPBITD->bufferLo) -> 0xCC0
WaitForDMATransfer()
}
}
void CMD0()
{
}
void CMD3()
{
0x0E07 = R00
R00 = 0x0BA2 // AXPBUPDATE->updNum
R01 = 0x03C0
*0x0E04 = 0x05
AC1 = 0
AC0 = 0
AX0.H = *R00++ // AXPBUPDATE->updNum[0]
AC1.M = 0x0B80
// 0x256
for (i=0; i<AX0.H; i++)
{
AC0.M = *R01++
AC0.M = AC0.M + AC1.M
AX1.L = *R01++
R02 = AC0.M
*R02 = AX1.L
}
// 0x25c
R03 = 0x0E05
*R03++ = R01
*R03++ = R02
// 0x260
AC0.M = *0x0B87 // AXPB->state
if (AC0.M == 1)
{
// JMP 0x267 (AX_PB_STATE_RUN)
*0x0E1C = *0x0E42
CALLR *0x0E15 // Load Sample (SrcSelectFunction)
// 0x270
AC0.M = *0xBB3 // AXPBVE->currentDelta (.15 volume at start of frame)
AC1.M = *0xBB2 // AXPBVE->currentVolume
// 0x278
AX0.L = AC1.M
AC1.M = AC1.M + AC0.M
AC0.M = AC0.M << 1
SET15 // ????
AX1.H = AC0.M
AC0.M = AX0.L
AX0.L = 0x8000
R00 = 0x0E44
// 0x27f
// scale volume table
.
.
.
/* for (int i=0; i<32; i++)
{
*R00++ = AC0.M;
prod = AX0.L * AX1.H
*R00++ = AC1.M;
AC0 = AC0 + prod
prod = AX0.L * AX1.H
*R00++ = AC0.M;
AC1 = AC1 + prod
prod = AX0.L * AX1.H
}*/
// 0x29f
*0xBB2 = CurrentVolume
// 0x2a1
// mutiply volume with sample
.
.
.
// 0x2ea
// Call mixer
// 0x02f0
}
else
{
// JMP 0x332
.
.
.
.
}
}
// ===============================================================
void Func_0x065D()
{
}

2703
docs/DSP/Crazy Taxi.txt Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 10.00
# Visual Studio 2008
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "DSP_InterC", "DSP_InterC\DSP_InterC.vcproj", "{A010425E-9D5E-461E-910D-0804C2A944D5}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Win32 = Debug|Win32
Release|Win32 = Release|Win32
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{A010425E-9D5E-461E-910D-0804C2A944D5}.Debug|Win32.ActiveCfg = Debug|Win32
{A010425E-9D5E-461E-910D-0804C2A944D5}.Debug|Win32.Build.0 = Debug|Win32
{A010425E-9D5E-461E-910D-0804C2A944D5}.Release|Win32.ActiveCfg = Release|Win32
{A010425E-9D5E-461E-910D-0804C2A944D5}.Release|Win32.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,320 @@
/*====================================================================
filename: opcodes.h
project: GameCube DSP Tool (gcdsp)
created: 2005.03.04
mail: duddie@walla.com
Copyright (c) 2005 Duddie
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
====================================================================*/
//
//
// At the moment just ls and sl are using the prolog
// perhaps all actions on r03 must be in the prolog
//
#include <stdafx.h>
#include "OutBuffer.h"
//
void dsp_op_ext_r_epi(uint16 _Opcode)
{
uint8 op = (_Opcode >> 2) & 0x3;
uint8 reg = _Opcode & 0x3;
switch (op)
{
case 0x00:
OutBuffer::AddCode("Error: dsp_op_ext_r_epi");
break;
case 0x01:
OutBuffer::AddCode("%s--", OutBuffer::GetRegName(reg));
// g_dsp.r[reg]--;
break;
case 0x02:
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(reg));
//g_dsp.r[reg]++;
break;
case 0x03:
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(reg), OutBuffer::GetRegName(reg+4));
// g_dsp.r[reg] += g_dsp.r[reg + 4];
break;
}
}
void dsp_op_ext_mv(uint16 _Opcode)
{
uint8 sreg = _Opcode & 0x3;
uint8 dreg = ((_Opcode >> 2) & 0x3);
OutBuffer::AddCode("%s = %s", OutBuffer::GetRegName(dreg + 0x18), OutBuffer::GetRegName(sreg + 0x1c));
// g_dsp.r[dreg + 0x18] = g_dsp.r[sreg + 0x1c];
}
void dsp_op_ext_s(uint16 _Opcode)
{
uint8 dreg = _Opcode & 0x3;
uint8 sreg = ((_Opcode >> 3) & 0x3) + 0x1c;
OutBuffer::AddCode("WriteDMEM(%s, %s)", OutBuffer::GetRegName(dreg), OutBuffer::GetRegName(sreg));
// dsp_dmem_write(g_dsp.r[dreg], g_dsp.r[sreg]);
if (_Opcode & 0x04)
{
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(dreg), OutBuffer::GetRegName(dreg+4));
// g_dsp.r[dreg] += g_dsp.r[dreg + 4];
}
else
{
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(dreg));
//g_dsp.r[dreg]++;
}
}
void dsp_op_ext_l(uint16 _Opcode)
{
uint8 sreg = _Opcode & 0x3;
uint8 dreg = ((_Opcode >> 3) & 0x7) + 0x18;
OutBuffer::AddCode("%s = ReadDMEM(%s)", OutBuffer::GetRegName(dreg), OutBuffer::GetRegName(sreg));
// uint16 val = dsp_dmem_read(g_dsp.r[sreg]);
// g_dsp.r[dreg] = val;
if (_Opcode & 0x04)
{
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(sreg), OutBuffer::GetRegName(sreg+4));
// g_dsp.r[sreg] += g_dsp.r[sreg + 4];
}
else
{
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(sreg));
// g_dsp.r[sreg]++;
}
}
void dsp_op_ext_ls_pro(uint16 _Opcode)
{
uint8 areg = (_Opcode & 0x1) + 0x1e;
OutBuffer::AddCode("WriteDMEM(%s, %s)", OutBuffer::GetRegName(0x03), OutBuffer::GetRegName(areg));
// dsp_dmem_write(g_dsp.r[0x03], g_dsp.r[areg]);
if (_Opcode & 0x8)
{
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(0x03), OutBuffer::GetRegName(0x07));
// g_dsp.r[0x03] += g_dsp.r[0x07];
}
else
{
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(0x03));
// g_dsp.r[0x03]++;
}
}
void dsp_op_ext_ls_epi(uint16 _Opcode)
{
uint8 dreg = ((_Opcode >> 4) & 0x3) + 0x18;
OutBuffer::AddCode("%s = ReadDMEM(%s)", OutBuffer::GetRegName(dreg), OutBuffer::GetRegName(0x00));
// uint16 val = dsp_dmem_read(g_dsp.r[0x00]);
// dsp_op_write_reg(dreg, val);
if (_Opcode & 0x4)
{
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(0x00), OutBuffer::GetRegName(0x04));
// g_dsp.r[0x00] += g_dsp.r[0x04];
}
else
{
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(0x00));
// g_dsp.r[0x00]++;
}
}
void dsp_op_ext_sl_pro(uint16 _Opcode)
{
uint8 areg = (_Opcode & 0x1) + 0x1e;
OutBuffer::AddCode("WriteDMEM(%s, %s)", OutBuffer::GetRegName(0x00), OutBuffer::GetRegName(areg));
// dsp_dmem_write(g_dsp.r[0x00], g_dsp.r[areg]);
if (_Opcode & 0x4)
{
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(0x00), OutBuffer::GetRegName(0x04));
// g_dsp.r[0x00] += g_dsp.r[0x04];
}
else
{
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(0x00));
// g_dsp.r[0x00]++;
}
}
void dsp_op_ext_sl_epi(uint16 _Opcode)
{
uint8 dreg = ((_Opcode >> 4) & 0x3) + 0x18;
OutBuffer::AddCode("%s = ReadDMEM(%s)", OutBuffer::GetRegName(dreg), OutBuffer::GetRegName(0x03));
// uint16 val = dsp_dmem_read(g_dsp.r[0x03]);
// dsp_op_write_reg(dreg, val);
if (_Opcode & 0x8)
{
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(0x03), OutBuffer::GetRegName(0x07));
// g_dsp.r[0x03] += g_dsp.r[0x07];
}
else
{
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(0x03));
// g_dsp.r[0x03]++;
}
}
void dsp_op_ext_ld(uint16 _Opcode)
{
uint8 dreg1 = (((_Opcode >> 5) & 0x1) << 1) + 0x18;
uint8 dreg2 = (((_Opcode >> 4) & 0x1) << 1) + 0x19;
uint8 sreg = _Opcode & 0x3;
OutBuffer::AddCode("%s = ReadDMEM(%s)", OutBuffer::GetRegName(dreg1), OutBuffer::GetRegName(sreg));
OutBuffer::AddCode("%s = ReadDMEM(%s)", OutBuffer::GetRegName(dreg2), OutBuffer::GetRegName(0x03));
// g_dsp.r[dreg1] = dsp_dmem_read(g_dsp.r[sreg]);
// g_dsp.r[dreg2] = dsp_dmem_read(g_dsp.r[0x03]);
if (_Opcode & 0x04)
{
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(sreg), OutBuffer::GetRegName(sreg + 0x04));
// g_dsp.r[sreg] += g_dsp.r[sreg + 0x04];
}
else
{
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(sreg));
// g_dsp.r[sreg]++;
}
if (_Opcode & 0x08)
{
OutBuffer::AddCode("%s += %s", OutBuffer::GetRegName(0x03), OutBuffer::GetRegName(sreg + 0x07));
// g_dsp.r[0x03] += g_dsp.r[0x07];
}
else
{
OutBuffer::AddCode("%s++", OutBuffer::GetRegName(0x03));
// g_dsp.r[0x03]++;
}
}
// ================================================================================
//
//
//
// ================================================================================
void dsp_op_ext_ops_pro(uint16 _Opcode)
{
if ((_Opcode & 0xFF) == 0){return;}
switch ((_Opcode >> 4) & 0xf)
{
case 0x00:
dsp_op_ext_r_epi(_Opcode);
break;
case 0x01:
dsp_op_ext_mv(_Opcode);
break;
case 0x02:
case 0x03:
dsp_op_ext_s(_Opcode);
break;
case 0x04:
case 0x05:
case 0x06:
case 0x07:
dsp_op_ext_l(_Opcode);
break;
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
if (_Opcode & 0x2)
{
dsp_op_ext_sl_pro(_Opcode);
}
else
{
dsp_op_ext_ls_pro(_Opcode);
}
return;
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f:
dsp_op_ext_ld(_Opcode);
break;
}
}
void dsp_op_ext_ops_epi(uint16 _Opcode)
{
if ((_Opcode & 0xFF) == 0){return;}
switch ((_Opcode >> 4) & 0xf)
{
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
if (_Opcode & 0x2)
{
dsp_op_ext_sl_epi(_Opcode);
}
else
{
dsp_op_ext_ls_epi(_Opcode);
}
return;
}
}

View File

@ -0,0 +1,33 @@
/*====================================================================
filename: opcodes.h
project: GameCube DSP Tool (gcdsp)
created: 2005.03.04
mail: duddie@walla.com
Copyright (c) 2005 Duddie
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
====================================================================*/
#ifndef _GDSP_EXT_OP_H
#define _GDSP_EXT_OP_H
void dsp_op_ext_ops_pro(uint16 _Opcode);
void dsp_op_ext_ops_epi(uint16 _Opcode);
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,48 @@
/*====================================================================
filename: gdsp_opcodes.h
project: GCemu
created: 2004-6-18
mail: duddie@walla.com
Copyright (c) 2005 Duddie & Tratax
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
====================================================================*/
#ifndef _GDSP_OPCODES_H
#define _GDSP_OPCODES_H
void dsp_op0(uint16 opc);
void dsp_op1(uint16 opc);
void dsp_op2(uint16 opc);
void dsp_op3(uint16 opc);
void dsp_op4(uint16 opc);
void dsp_op5(uint16 opc);
void dsp_op6(uint16 opc);
void dsp_op7(uint16 opc);
void dsp_op8(uint16 opc);
void dsp_op9(uint16 opc);
void dsp_opab(uint16 opc);
void dsp_opcd(uint16 opc);
void dsp_ope(uint16 opc);
void dsp_opf(uint16 opc);
#define R_SR 0x13
#define FLAG_ENABLE_INTERUPT 11
#endif

View File

@ -0,0 +1,52 @@
// DSP_InterC.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include "DSPOpcodes.h"
uint16 g_IMemory[0x1000];
uint16 g_currentAddress;
uint16 FetchOpcode()
{
uint16 value = swap16(g_IMemory[g_currentAddress & 0x0FFF]);
g_currentAddress++;
return value;
}
void DecodeOpcode(uint16 op);
void Decode(uint16 startAddress, uint16 endAddress)
{
g_currentAddress = startAddress;
while (g_currentAddress < endAddress)
{
uint16 oldPC = g_currentAddress;
uint16 op = FetchOpcode();
OutBuffer::Add("// l_%4X:", oldPC);
DecodeOpcode(op);
}
}
int _tmain(int argc, _TCHAR* argv[])
{
FILE* pFile = fopen("c:\\_\\dsp_rom.bin", "rb");
if (pFile == NULL)
return -1;
fread(g_IMemory, 0x1000, 1, pFile);
fclose(pFile);
//////
OutBuffer::Init();
Decode(0x80e7, 0x81f9);
return 0;
}

View File

@ -0,0 +1,249 @@
<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioProject
ProjectType="Visual C++"
Version="9,00"
Name="DSP_InterC"
ProjectGUID="{A010425E-9D5E-461E-910D-0804C2A944D5}"
RootNamespace="DSP_InterC"
Keyword="Win32Proj"
TargetFrameworkVersion="196613"
>
<Platforms>
<Platform
Name="Win32"
/>
</Platforms>
<ToolFiles>
</ToolFiles>
<Configurations>
<Configuration
Name="Debug|Win32"
OutputDirectory="$(SolutionDir)$(ConfigurationName)"
IntermediateDirectory="$(ConfigurationName)"
ConfigurationType="1"
CharacterSet="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="0"
PreprocessorDefinitions="WIN32;_DEBUG;_CONSOLE"
MinimalRebuild="true"
BasicRuntimeChecks="3"
RuntimeLibrary="3"
UsePrecompiledHeader="2"
WarningLevel="3"
DebugInformationFormat="4"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
LinkIncremental="2"
GenerateDebugInformation="true"
SubSystem="1"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
<Configuration
Name="Release|Win32"
OutputDirectory="$(SolutionDir)$(ConfigurationName)"
IntermediateDirectory="$(ConfigurationName)"
ConfigurationType="1"
CharacterSet="1"
WholeProgramOptimization="1"
>
<Tool
Name="VCPreBuildEventTool"
/>
<Tool
Name="VCCustomBuildTool"
/>
<Tool
Name="VCXMLDataGeneratorTool"
/>
<Tool
Name="VCWebServiceProxyGeneratorTool"
/>
<Tool
Name="VCMIDLTool"
/>
<Tool
Name="VCCLCompilerTool"
Optimization="2"
EnableIntrinsicFunctions="true"
PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
RuntimeLibrary="2"
EnableFunctionLevelLinking="true"
UsePrecompiledHeader="2"
WarningLevel="3"
DebugInformationFormat="3"
/>
<Tool
Name="VCManagedResourceCompilerTool"
/>
<Tool
Name="VCResourceCompilerTool"
/>
<Tool
Name="VCPreLinkEventTool"
/>
<Tool
Name="VCLinkerTool"
LinkIncremental="1"
GenerateDebugInformation="true"
SubSystem="1"
OptimizeReferences="2"
EnableCOMDATFolding="2"
TargetMachine="1"
/>
<Tool
Name="VCALinkTool"
/>
<Tool
Name="VCManifestTool"
/>
<Tool
Name="VCXDCMakeTool"
/>
<Tool
Name="VCBscMakeTool"
/>
<Tool
Name="VCFxCopTool"
/>
<Tool
Name="VCAppVerifierTool"
/>
<Tool
Name="VCPostBuildEventTool"
/>
</Configuration>
</Configurations>
<References>
</References>
<Files>
<Filter
Name="Source Files"
Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
>
<File
RelativePath=".\DSP_InterC.cpp"
>
</File>
<File
RelativePath=".\DSPExt.cpp"
>
</File>
<File
RelativePath=".\DSPExt.h"
>
</File>
<File
RelativePath=".\DSPOpcodes.cpp"
>
</File>
<File
RelativePath=".\DSPOpcodes.h"
>
</File>
<File
RelativePath=".\OutBuffer.cpp"
>
</File>
<File
RelativePath=".\OutBuffer.h"
>
</File>
<File
RelativePath=".\stdafx.cpp"
>
<FileConfiguration
Name="Debug|Win32"
>
<Tool
Name="VCCLCompilerTool"
UsePrecompiledHeader="1"
/>
</FileConfiguration>
<FileConfiguration
Name="Release|Win32"
>
<Tool
Name="VCCLCompilerTool"
UsePrecompiledHeader="1"
/>
</FileConfiguration>
</File>
</Filter>
<Filter
Name="Header Files"
Filter="h;hpp;hxx;hm;inl;inc;xsd"
UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
>
<File
RelativePath=".\stdafx.h"
>
</File>
<File
RelativePath=".\targetver.h"
>
</File>
</Filter>
<Filter
Name="Resource Files"
Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
>
</Filter>
<File
RelativePath=".\ReadMe.txt"
>
</File>
</Files>
<Globals>
</Globals>
</VisualStudioProject>

View File

@ -0,0 +1,155 @@
// stdafx.cpp : source file that includes just the standard includes
// DSP_InterC.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information
#include "stdafx.h"
#include <stdarg.h>
#include <stdio.h>
namespace OutBuffer
{
void Init()
{
}
void Add(const char* _fmt, ...)
{
static char Msg[2048];
va_list ap;
va_start(ap, _fmt);
vsprintf(Msg, _fmt, ap);
va_end(ap);
printf("%s\n", Msg);
}
void AddCode(const char* _fmt, ...)
{
static char Msg[2048];
va_list ap;
va_start(ap, _fmt);
vsprintf(Msg, _fmt, ap);
va_end(ap);
printf(" %s;\n", Msg);
}
// predefined labels
typedef struct pdlabel_t
{
uint16 addr;
const char* name;
const char* description;
} pdlabels_t;
pdlabel_t regnames[] =
{
{0x00, "R00", "Register 00",},
{0x01, "R01", "Register 01",},
{0x02, "R02", "Register 02",},
{0x03, "R03", "Register 03",},
{0x04, "R04", "Register 04",},
{0x05, "R05", "Register 05",},
{0x06, "R06", "Register 06",},
{0x07, "R07", "Register 07",},
{0x08, "R08", "Register 08",},
{0x09, "R09", "Register 09",},
{0x0a, "R10", "Register 10",},
{0x0b, "R11", "Register 11",},
{0x0c, "ST0", "Call stack",},
{0x0d, "ST1", "Data stack",},
{0x0e, "ST2", "Loop address stack",},
{0x0f, "ST3", "Loop counter",},
{0x00, "ACH0", "Accumulator High 0",},
{0x11, "ACH1", "Accumulator High 1",},
{0x12, "CR", "Config Register",},
{0x13, "SR", "Special Register",},
{0x14, "PROD_l", "PROD L",},
{0x15, "PROD_m1", "PROD M1",},
{0x16, "PROD_h", "PROD H",},
{0x17, "PROD_m2", "PROD M2",},
{0x18, "AX0_l", "Additional Accumulators Low 0",},
{0x19, "AX1_l", "Additional Accumulators Low 1",},
{0x1a, "AX0_h", "Additional Accumulators High 0",},
{0x1b, "AX1_h", "Additional Accumulators High 1",},
{0x1c, "AC0_l", "Register 28",},
{0x1d, "AC1_l", "Register 29",},
{0x1e, "AC0_m", "Register 00",},
{0x1f, "AC1_m", "Register 00",},
// additional to resolve special names
{0x20, "ACC0", "Accumulators 0",},
{0x21, "ACC1", "Accumulators 1",},
{0x22, "AX0", "Additional Accumulators 0",},
{0x23, "AX1", "Additional Accumulators 1",},
};
const pdlabel_t pdlabels[] =
{
{0xffa0, "COEF_A1_0", "COEF_A1_0",},
{0xffa1, "COEF_A2_0", "COEF_A2_0",},
{0xffa2, "COEF_A1_1", "COEF_A1_1",},
{0xffa3, "COEF_A2_1", "COEF_A2_1",},
{0xffa4, "COEF_A1_2", "COEF_A1_2",},
{0xffa5, "COEF_A2_2", "COEF_A2_2",},
{0xffa6, "COEF_A1_3", "COEF_A1_3",},
{0xffa7, "COEF_A2_3", "COEF_A2_3",},
{0xffa8, "COEF_A1_4", "COEF_A1_4",},
{0xffa9, "COEF_A2_4", "COEF_A2_4",},
{0xffaa, "COEF_A1_5", "COEF_A1_5",},
{0xffab, "COEF_A2_5", "COEF_A2_5",},
{0xffac, "COEF_A1_6", "COEF_A1_6",},
{0xffad, "COEF_A2_6", "COEF_A2_6",},
{0xffae, "COEF_A1_7", "COEF_A1_7",},
{0xffaf, "COEF_A2_7", "COEF_A2_7",},
{0xffc9, "DSCR", "DSP DMA Control Reg",},
{0xffcb, "DSBL", "DSP DMA Block Length",},
{0xffcd, "DSPA", "DSP DMA DMEM Address",},
{0xffce, "DSMAH", "DSP DMA Mem Address H",},
{0xffcf, "DSMAL", "DSP DMA Mem Address L",},
{0xffd1, "SampleFormat", "SampleFormat",},
{0xffd3, "Unk Zelda", "Unk Zelda writes to it",},
{0xffd4, "ACSAH", "Accelerator start address H",},
{0xffd5, "ACSAL", "Accelerator start address L",},
{0xffd6, "ACEAH", "Accelerator end address H",},
{0xffd7, "ACEAL", "Accelerator end address L",},
{0xffd8, "ACCAH", "Accelerator current address H",},
{0xffd9, "ACCAL", "Accelerator current address L",},
{0xffda, "pred_scale", "pred_scale",},
{0xffdb, "yn1", "yn1",},
{0xffdc, "yn2", "yn2",},
{0xffdd, "ARAM", "Direct Read from ARAM (uses ADPCM)",},
{0xffde, "GAIN", "Gain",},
{0xffef, "AMDM", "ARAM DMA Request Mask",},
{0xfffb, "DIRQ", "DSP IRQ Request",},
{0xfffc, "DMBH", "DSP Mailbox H",},
{0xfffd, "DMBL", "DSP Mailbox L",},
{0xfffe, "CMBH", "CPU Mailbox H",},
{0xffff, "CMBL", "CPU Mailbox L",},
};
const char* GetRegName(uint16 reg)
{
return regnames[reg].name;
}
const char* GetMemName(uint16 addr)
{
static char Buffer[1024];
for (int i=0; i<sizeof(pdlabels); i++)
{
if (pdlabels[i].addr == addr)
return pdlabels[i].name;
}
sprintf(Buffer, "0x%4x", addr);
return Buffer;
}
}

View File

@ -0,0 +1,23 @@
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//
#pragma once
namespace OutBuffer
{
void Init();
void Add(const char* _fmt, ...);
void AddCode(const char* _fmt, ...);
const char* GetRegName(uint16 reg);
const char* GetMemName(uint16 addr);
}
// TODO: reference additional headers your program requires here

View File

@ -0,0 +1,33 @@
========================================================================
CONSOLE APPLICATION : DSP_InterC Project Overview
========================================================================
AppWizard has created this DSP_InterC application for you.
This file contains a summary of what you will find in each of the files that
make up your DSP_InterC application.
DSP_InterC.vcproj
This is the main project file for VC++ projects generated using an Application Wizard.
It contains information about the version of Visual C++ that generated the file, and
information about the platforms, configurations, and project features selected with the
Application Wizard.
DSP_InterC.cpp
This is the main application source file.
/////////////////////////////////////////////////////////////////////////////
Other standard files:
StdAfx.h, StdAfx.cpp
These files are used to build a precompiled header (PCH) file
named DSP_InterC.pch and a precompiled types file named StdAfx.obj.
/////////////////////////////////////////////////////////////////////////////
Other notes:
AppWizard uses "TODO:" comments to indicate parts of the source code you
should add to or customize.
/////////////////////////////////////////////////////////////////////////////

View File

@ -0,0 +1,234 @@
/*====================================================================
filename: opcodes.h
project: GameCube DSP Tool (gcdsp)
created: 2005.03.04
mail: duddie@walla.com
Copyright (c) 2005 Duddie
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
====================================================================*/
#ifndef _GDSP_OPCODES_HELPER_H
#define _GDSP_OPCODES_HELPER_H
#include "Globals.h"
#include "gdsp_opcodes.h"
#include "gdsp_memory.h"
#include "gdsp_interpreter.h"
#include "gdsp_registers.h"
#include "gdsp_ext_op.h"
// ---------------------------------------------------------------------------------------
//
// --- SR
//
// ---------------------------------------------------------------------------------------
inline void dsp_SR_set_flag(uint8 flag)
{
g_dsp.r[R_SR] |= (1 << flag);
}
inline bool dsp_SR_is_flag_set(uint8 flag)
{
return((g_dsp.r[R_SR] & (1 << flag)) > 0);
}
// ---------------------------------------------------------------------------------------
//
// --- reg
//
// ---------------------------------------------------------------------------------------
inline uint16 dsp_op_read_reg(uint8 reg)
{
uint16 val;
switch (reg & 0x1f)
{
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f:
val = dsp_reg_load_stack(reg - 0x0c);
break;
default:
val = g_dsp.r[reg];
break;
}
return(val);
}
inline void dsp_op_write_reg(uint8 reg, uint16 val)
{
switch (reg & 0x1f)
{
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f:
dsp_reg_store_stack(reg - 0x0c, val);
break;
default:
g_dsp.r[reg] = val;
break;
}
}
// ---------------------------------------------------------------------------------------
//
// --- prod
//
// ---------------------------------------------------------------------------------------
inline sint64 dsp_get_long_prod()
{
sint64 val;
sint64 low_prod;
val = (sint8)g_dsp.r[0x16];
val <<= 32;
low_prod = g_dsp.r[0x15];
low_prod += g_dsp.r[0x17];
low_prod <<= 16;
low_prod |= g_dsp.r[0x14];
val += low_prod;
return(val);
}
inline void dsp_set_long_prod(sint64 val)
{
g_dsp.r[0x14] = (uint16)val;
val >>= 16;
g_dsp.r[0x15] = (uint16)val;
val >>= 16;
g_dsp.r[0x16] = (uint16)val;
g_dsp.r[0x17] = 0;
}
// ---------------------------------------------------------------------------------------
//
// --- acc
//
// ---------------------------------------------------------------------------------------
inline sint64 dsp_get_long_acc(uint8 reg)
{
_dbg_assert_(reg < 2);
sint64 val;
sint64 low_acc;
val = (sint8)g_dsp.r[0x10 + reg];
val <<= 32;
low_acc = g_dsp.r[0x1e + reg];
low_acc <<= 16;
low_acc |= g_dsp.r[0x1c + reg];
val |= low_acc;
return(val);
}
inline uint64 dsp_get_ulong_acc(uint8 reg)
{
_dbg_assert_(reg < 2);
uint64 val;
uint64 low_acc;
val = (uint8)g_dsp.r[0x10 + reg];
val <<= 32;
low_acc = g_dsp.r[0x1e + reg];
low_acc <<= 16;
low_acc |= g_dsp.r[0x1c + reg];
val |= low_acc;
return(val);
}
inline void dsp_set_long_acc(uint8 _reg, sint64 val)
{
_dbg_assert_(_reg < 2);
g_dsp.r[0x1c + _reg] = (uint16)val;
val >>= 16;
g_dsp.r[0x1e + _reg] = (uint16)val;
val >>= 16;
g_dsp.r[0x10 + _reg] = (uint16)val;
}
inline sint16 dsp_get_acc_l(uint8 _reg)
{
_dbg_assert_(_reg < 2);
return(g_dsp.r[0x1c + _reg]);
}
inline sint16 dsp_get_acc_m(uint8 _reg)
{
_dbg_assert_(_reg < 2);
return(g_dsp.r[0x1e + _reg]);
}
inline sint16 dsp_get_acc_h(uint8 _reg)
{
_dbg_assert_(_reg < 2);
return(g_dsp.r[0x10 + _reg]);
}
// ---------------------------------------------------------------------------------------
//
// --- acx
//
// ---------------------------------------------------------------------------------------
inline sint64 dsp_get_long_acx(uint8 _reg)
{
_dbg_assert_(_reg < 2);
sint64 val = (sint16)g_dsp.r[0x1a + _reg];
val <<= 16;
sint64 low_acc = g_dsp.r[0x18 + _reg];
val |= low_acc;
return(val);
}
inline sint16 dsp_get_ax_l(uint8 _reg)
{
_dbg_assert_(_reg < 2);
return(g_dsp.r[0x18 + _reg]);
}
inline sint16 dsp_get_ax_h(uint8 _reg)
{
_dbg_assert_(_reg < 2);
return(g_dsp.r[0x1a + _reg]);
}
#endif

View File

@ -0,0 +1,23 @@
// stdafx.cpp : source file that includes just the standard includes
// DSP_InterC.pch will be the pre-compiled header
// stdafx.obj will contain the pre-compiled type information
#include "stdafx.h"
// TODO: reference any additional headers you need in STDAFX.H
// and not in this file
#include <stdarg.h>
void ErrorLog(const char* _fmt, ...)
{
char Msg[512];
va_list ap;
va_start(ap, _fmt);
vsprintf(Msg, _fmt, ap);
va_end(ap);
printf("Error");
}

View File

@ -0,0 +1,39 @@
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//
#pragma once
#include "targetver.h"
#include <stdio.h>
#include <tchar.h>
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef unsigned long long uint64;
typedef unsigned int uint;
typedef signed char sint8;
typedef signed short sint16;
typedef signed int sint32;
typedef signed long long sint64;
extern uint16 FetchOpcode();
extern void ErrorLog(const char* _fmt, ...);
inline uint16 swap16(uint16 x)
{
return((x >> 8) | (x << 8));
}
#include "OutBuffer.h"
// TODO: reference additional headers your program requires here

View File

@ -0,0 +1,13 @@
#pragma once
// The following macros define the minimum required platform. The minimum required platform
// is the earliest version of Windows, Internet Explorer etc. that has the necessary features to run
// your application. The macros work by enabling all features available on platform versions up to and
// including the version specified.
// Modify the following defines if you have to target a platform prior to the ones specified below.
// Refer to MSDN for the latest info on corresponding values for different platforms.
#ifndef _WIN32_WINNT // Specifies that the minimum required platform is Windows Vista.
#define _WIN32_WINNT 0x0600 // Change this to the appropriate value to target other versions of Windows.
#endif

3088
docs/DSP/DSP_UC_Zelda.txt Normal file

File diff suppressed because it is too large Load Diff

BIN
docs/DSP/GC DSP.pdf Normal file

Binary file not shown.

226
docs/DSP/SrcSelect_.c Normal file
View File

@ -0,0 +1,226 @@
// Init Hardware PCM decoder
/*
06a3 0082 0bb8 LRI $R02, #0x0bb8
06a5 195e LRRI $AC0.M, @$R02
06a6 2ed1 SRS @SampleFormat, $AC0.M
06a7 195e LRRI $AC0.M, @$R02
06a8 2ed4 SRS @ACSAH, $AC0.M
06a9 195e LRRI $AC0.M, @$R02
06aa 2ed5 SRS @ACSAL, $AC0.M
06ab 195e LRRI $AC0.M, @$R02
06ac 2ed6 SRS @ACEAH, $AC0.M
06ad 195e LRRI $AC0.M, @$R02
06ae 2ed7 SRS @ACEAL, $AC0.M
06af 195e LRRI $AC0.M, @$R02
06b0 2ed8 SRS @ACCAH, $AC0.M
06b1 195e LRRI $AC0.M, @$R02
06b2 2ed9 SRS @ACCAL, $AC0.M
06b3 195e LRRI $AC0.M, @$R02
06b4 2ea0 SRS @COEF_A1_0, $AC0.M
06b5 195e LRRI $AC0.M, @$R02
06b6 2ea1 SRS @COEF_A2_0, $AC0.M
06b7 195e LRRI $AC0.M, @$R02
06b8 2ea2 SRS @COEF_A1_1, $AC0.M
06b9 195e LRRI $AC0.M, @$R02
06ba 2ea3 SRS @COEF_A2_1, $AC0.M
06bb 195e LRRI $AC0.M, @$R02
06bc 2ea4 SRS @COEF_A1_2, $AC0.M
06bd 195e LRRI $AC0.M, @$R02
06be 2ea5 SRS @COEF_A2_2, $AC0.M
06bf 195e LRRI $AC0.M, @$R02
06c0 2ea6 SRS @COEF_A1_3, $AC0.M
06c1 195e LRRI $AC0.M, @$R02
06c2 2ea7 SRS @COEF_A2_3, $AC0.M
06c3 195e LRRI $AC0.M, @$R02
06c4 2ea8 SRS @COEF_A1_4, $AC0.M
06c5 195e LRRI $AC0.M, @$R02
06c6 2ea9 SRS @COEF_A2_4, $AC0.M
06c7 195e LRRI $AC0.M, @$R02
06c8 2eaa SRS @COEF_A1_5, $AC0.M
06c9 195e LRRI $AC0.M, @$R02
06ca 2eab SRS @COEF_A2_5, $AC0.M
06cb 195e LRRI $AC0.M, @$R02
06cc 2eac SRS @COEF_A1_6, $AC0.M
06cd 195e LRRI $AC0.M, @$R02
06ce 2ead SRS @COEF_A2_6, $AC0.M
06cf 195e LRRI $AC0.M, @$R02
06d0 2eae SRS @COEF_A1_7, $AC0.M
06d1 195e LRRI $AC0.M, @$R02
06d2 2eaf SRS @COEF_A2_7, $AC0.M
06d3 195e LRRI $AC0.M, @$R02
06d4 2ede SRS @GAIN, $AC0.M
06d5 195e LRRI $AC0.M, @$R02
06d6 2eda SRS @pred_scale, $AC0.M
06d7 195e LRRI $AC0.M, @$R02
06d8 2edb SRS @yn1, $AC0.M
06d9 195e LRRI $AC0.M, @$R02
06da 2edc SRS @yn2, $AC0.M
*/
/// hmmmmmm
/*
06db 8c00 CLR15
06dc 8a00 M2
06dd 8e00 S40
*/
///
AX0.L = *0xe16
AX1.H = ratioHi // sample ratio from AXPBSRC
AX1.L = ratioLo // sample ratio from AXPBSRC
AC0 = 0
AC0.L = currentAddressFrac // AXPBSRC
*0x0e48 = last_samples[0]
*0x0e49 = last_samples[1]
*0x0e4A = last_samples[2]
*0x0e4B = last_samples[3]
AC1.M = AX1.L
ACC = ACC >> 0x05
AC1 = AC1 + AC0
R04 = AC1.M
R05 = AC1.L
AC1 = AC1 + 0xe0 // ?????? AC1 = AC1 - 2097152 (because 0xe0 is converted to signed and shift << 16)
AC1 = AC1 >> 16
AC1 = -AC1
R06 = -AC1
//////////////
AC1 = 0
AC1.L = R05
AC1 = AC1 << 2
R05 = AC1.M
// 0x06fc
AX.0 = 0x1fc
AC0 = 0xe48
R01 = 0xFFDD
R03 = 0x0D80
// 0x0704
for (i=0; i<R04; i++)
{
AC0 = AC0 + AX1
*R03++ = AC0.M
AC1.M = AC0.L
LSR $AC1.M, #0x79
AC1 = AC1 & AX0.H
AC1 += AX0.L
*R03++ = AC1
*R00++ = *ADPCM_DECODER
*R00++ = *ADPCM_DECODER
*R00++ = *ADPCM_DECODER
*R00++ = *ADPCM_DECODER
}
/*
0704 0064 0715 BLOOP $R04, 0x0715
0706 1827 LRR $R07, @$R01
0707 1b07 SRRI @$R00, $R07
0708 4a00 ADDAX $AC0.M, $AX1.L
0709 1ffc MRR $AC1.M, $AC0.L
070a 1827 LRR $R07, @$R01
070b 1b07 SRRI @$R00, $R07
070c 1579 LSR $AC1.M, #0x79
070d 3500 ANDR $AC1.M, $R00
070e 1827 LRR $R07, @$R01
070f 1b07 SRRI @$R00, $R07
0710 4100 ADDR $AC1.M, $AX0.L
0711 1b7e SRRI @$R03, $AC0.M
0712 1827 LRR $R07, @$R01
0713 1b07 SRRI @$R00, $R07
0714 1b7f SRRI @$R03, $AC1.M
0715 0000 NOP */
// 0x0715
// prolly copies the "rest"
for (i=0; i<r05; i++)
{
R07 = *ADPCM_DECODER
*R00++ = R07
}
// 0x71c
R03--
AC1 = *R03
/* 071c 0007 DAR $R03
071d 187f LRR $AC1.M, @$R03 */
for (i<0; i<r06; i++)
{
AC0 = AX1
*R03++ = AC1.M
}
/*
071e 0066 0724 BLOOP $R06, 0x0724
0720 4a3b ADDAXĚS $AC0.M, $AX1.L : @$R03, $AC1.M
0721 1ffc MRR $AC1.M, $AC0.L
0722 1579 LSR $AC1.M, #0x79
0723 3533 ANDRĚS $AC1.M, $R00 : @$R03, $AC0.M
0724 4100 ADDR $AC1.M, $AX0.L
*/
0725 1b7f SRRI @$R03, $AC1.M
0726 0004 DAR $R00
0727 189f LRRD $AC1.M, @$R00
0728 1adf SRRD @$R02, $AC1.M
0729 189f LRRD $AC1.M, @$R00
072a 1adf SRRD @$R02, $AC1.M
072b 189f LRRD $AC1.M, @$R00
072c 1adf SRRD @$R02, $AC1.M
072d 189f LRRD $AC1.M, @$R00
072e 1adf SRRD @$R02, $AC1.M
072f 1adc SRRD @$R02, $AC0.L
0730 0082 0bd2 LRI $R02, #0x0bd2
0732 27dc LRS $AC1.M, @yn2
0733 1adf SRRD @$R02, $AC1.M
0734 27db LRS $AC1.M, @yn1
0735 1adf SRRD @$R02, $AC1.M
0736 27da LRS $AC1.M, @pred_scale
0737 1adf SRRD @$R02, $AC1.M
0738 0082 0bbe LRI $R02, #0x0bbe
073a 27d9 LRS $AC1.M, @ACCAL
073b 1adf SRRD @$R02, $AC1.M
073c 27d8 LRS $AC1.M, @ACCAH
073d 1adf SRRD @$R02, $AC1.M
073e 8f00 S16
073f 00c1 0e42 LR $R01, @0x0e42
0741 0082 0d80 LRI $R02, #0x0d80
0743 1940 LRRI $R00, @$R02
0744 1943 LRRI $R03, @$R02
0745 80f0 NXĚLDX : $AX1.L, $AX1.H, @$R01
0746 b8c0 MULXĚLDX $AX0.H, $AX1.H : $AX0.L, $AX0.H, @$R00
0747 111f 074f BLOOPI #0x1f, 0x074f
0749 a6f0 MULXMVĚLDX $AX0.L, $AX1.L, $AC0.M : $AX1.L, $AX1.H, @$R01
074a bcf0 MULXACĚLDX $AX0.H, $AX1.H, $AC0.M : $AX1.L, $AX1.H, @$R01
074b 1940 LRRI $R00, @$R02
074c 1943 LRRI $R03, @$R02
074d bcf0 MULXACĚLDX $AX0.H, $AX1.H, $AC0.M : $AX1.L, $AX1.H, @$R01
074e 4ec0 ADDPĚLDX $AC0.M : $AX0.L, $AX0.H, @$R00
074f b831 MULXĚS $AX0.H, $AX1.H : @$R01, $AC0.M
0750 a6f0 MULXMVĚLDX $AX0.L, $AX1.L, $AC0.M : $AX1.L, $AX1.H, @$R01
0751 bcf0 MULXACĚLDX $AX0.H, $AX1.H, $AC0.M : $AX1.L, $AX1.H, @$R01
0752 bc00 MULXAC $AX0.H, $AX1.H, $AC0.M
0753 4e00 ADDP $AC0.M
0754 1b3e SRRI @$R01, $AC0.M
0755 00e1 0e42 SR @0x0e42, $R01
0757 02df RET

45
docs/DSP/Zelda.txt Normal file
View File

@ -0,0 +1,45 @@
CPU:
---------------------------------------------------------------------------------------
void DSPSendCommands2(_pBuffer, _NumberOfMessages, _StartWork)
{
while (!DSP_Running_Check());
OldInterrupts = OSDisableInterrupts();
if (DSPCheckMailToDSP() != 0)
{
OSRestoreInterrupts();
return -1;
}
DSPSendMailToDSP(_NumberOfMessages)
DSPAssertInt()
while (DSPCheckMailToDSP() != 0) {}
if (_NumberOfMessages == 0)
_NumberOfMessages = 1
if (_StartWork != 0)
{
r28 = DSPStartWork(*_pBuffer, _StartWork)
}
_StartWork = 0
while(Count != _NumberOfMessages)
{
DSPSendMailToDSP(Buffer[Count])
while (DSPCheckMailToDSP() != 0) {}
Count++
}
OSRestoreInterrupts(OldInterrupts)
return r28;
}

2047
docs/DSP/dsp_rom.txt Normal file

File diff suppressed because it is too large Load Diff

423
docs/DSP/wwdsp.c Normal file
View File

@ -0,0 +1,423 @@
/* important variables */
short mem[0x1000];
#define v_0341 mem[0x0341] /* op#2 saves a copy of 344 here */
#define v_0343 mem[0x0343] /* message type? */
#define v_0344 mem[0x0344] /* low byte of first word of message */
#define v_0345 mem[0x0345] /* copy of second word of message */
#define a_0346 mem[0x0346] /* buffer for message contents, size unknown */
#define v_034e mem[0x034e] /* init to 0, later set to most recent value written in a_04fc */
#define v_0350 mem[0x0350] /* init to 0x0280 (write location of messages) */
#define v_0351 mem[0x0351] /* init to 0x0280 (read location?) */
#define v_0352 mem[0x0352] /* init to 0 (number of messages pending?) */
#define v_0355 mem[0x0355] /* used by op#2, init to 0 */
#define a_0356 (mem+0x0356) /* message contents */
#define a_0388 (mem+0x388) /* where op 2 keeps its message */
#define a_038e (mem+0x38e) /* op#2 saves a copy of 345 here */
#define a_03a8 (mem+0x3a8) /* where op#2 dmas in its data, at least 0x80 */
#define v_03fa mem[0x03fa] /* temp for ax0.h during exception */
#define v_03fb mem[0x03fb] /* temp for ar0 during exception */
#define v_03fc mem[0x03fc] /* temp for r08 during exception */
#define v_03fd mem[0x03fd] /* temp for ac0.h during exception */
#define v_03fe mem[0x03fe] /* temp for ac0.m during exception */
#define v_03ff mem[0x03ff] /* temp for ac0.l during exception */
#define a_04e8 (mem+0x04e8) /* 4 element array */
#define a_04ec (mem+0x04ec) /* 4 element array (empty) */
#define a_04f0 (mem+0x04f0) /* 4 element array */
#define a_04f4 (mem+0x04f4) /* 4 element array (empty) */
#define a_04fc (mem+0x04fc) /* 16 element array, written by messages */
#define a_09a0 (mem+0x09a0) /* 0x50 element array, used by op#2, cleared */
#define a_0a00 (mem+0x0a00) /* 0x50 element array, used by op#2, cleared */
#define a_0b00 (mem+0x0b00) /* array from 0x0b00-0x0bff, involves accelerator? */
#define a_0ca0 (mem+0x0ca0) /* 0x50 element array, used by op#2, cleared */
#define a_0d00 (mem+0x0d00) /* 0x50 element array, used by op#2, cleared */
#define a_0d60 (mem+0x0d60) /* 0x50 element array, used by op#2, cleared */
#define a_0f40 (mem+0x0f40) /* 0x50 element array, used by op#2, cleared */
/* reset exception vector 0x0000 */
void main() {
/* JMP 0x0012 */
/* various inits */
SBCLR(5); /* disable interrupts? */
fcn_0057(); /* init hardware stuff */
for(ac1.m=0x1000,ac0.m=0;ac1.m>0;ac1.m--) mem[ac0.m++]=0; /* clear all vars */
fcn_0688(); /* init some vars */
fcn_04c0(); /* set something up related to the accelerator at a_0b00 */
fcn_0e14(); /* set up a table */
fcn_066a(0); /* send a message */
fcn_0674(0x1111); /* send a message */
v_034e=0;
SBSET(5); /* enable interrupts? */
/* jump to 0x06c5 */
mainloop:
while (v_0352) ; /* while no messages pending */
SBCLR(5); /* do not distrub */
v_0352--; /* important that this be atomic */
SBSET(5);
t=v_0351;
size=mem[t++];
if (!(size&0x8000)) { /* size > 0x7fff invalid */
if (size==0) { /* die on message of length 0? */
/* jump to 0x06f5 */
/* jump to 0x05f0 */
/* TODO: analysis of HALT */
HALT();
}
for (i=size,j=0;i>0;i--) {
a_0356[j++]=mem[t++];
a_0356[j++]=mem[t++];
}
v_0351=t;
/* jump to 0x002f */
/* actual command handling */
v_0345=a_0356[1];
v_0344=a_0356[0]&0x00ff;
v_0343=(a_0346[0]>>7)&0x7e;
/* jump table at 0x75 used here */
switch (v_0343>>1) {
// 0x43
case 0:
case 10:
case 11:
case 12:
case 14:
case 15:
/* invalid command? */
config=0x00ff;
fcn_066a(0x04); /* send off a message */
fcn_0674(a_0356[0]); /* send first word of command as a message */
goto mainloop;
break;
case 1:
/* jmp 0x0095 */
break;
case 2:
/* jmp 0x0243 */
sub_0243();
break;
case 3:
/* jmp 0x0073 */
break;
case 4:
/* jmp 0x580 */
break;
case 5:
/* jmp 0x592 */
break;
case 6:
/* jmp 0x469 */
break;
case 7:
/* jmp 0x41d */
break;
case 8: /* mix */
/* jmp 0x0485 */
fcn_0067(fcn_0067(0x0346)); /* read message twice? */
/* take in the two buffers to mix */
fcn_0525(mem[0x344],mem[0x346],mem[0x347],0x400); /* size, addrH, addrL, dsp addr */
fcn_0525(mem[0x344],mem[0x348],mem[0x349],0x800);
S16(); /* saturate all adds, multiplies to 16 bits? */
i=mem[0x0344];
src1=0x400;
src2=0x800;
scale=mem[0x345];
prod=scale*mem[src2++];
val2=mem[src2++];
do {
val1=mem[src1];
val1+=prod;
prod=scale*val2;
mem[src1]=val1;
val2=mem[src2];
src1++;
src2++;
} while (--i);
S40();
/* dma out mixed buf */
fcn_0523(mem[0x344],mem[0x346],mem[0x347],0x400);
break;
case 9:
/* jmp 0x44d */
break;
case 13:
/* jmp 0x00b2 */
break;
}
}
v_0351=t;
goto mainloop;
}
/* message in MBOX exception vector? 0x000e */
void exception() {
/* JMP 0x05b8 */
SBCLR(5);
S40();
/* save ax0.h,ac0.h,ac0.m, and ac0.l */
if ((tH=register_fffe)&0x8000) { /* CPU mailbox H */
if (!(tsize=register_ffff)) { /* CPU mailbox L */
/* empty message? */
while (!((tH=register_fffe)&0x8000)) ;
tH&=0xf;
v_034e=(tH+1)<<4;
a_04fc[tH]=register_ffff;
} else { /* nonempty message? */
/* jump to 0x0692 */
/* save ar0, r08 */
t=v_0350;
mem[t++]=tsize;
do {
while (!((tH=register_fffe)&0x8000)) ;
mem[t++]=tH;
mem[t++]=register_ffff;
} while (--tsize);
v_0350=t;
v_0352++;
/* restore ar0, r08 */
/* jump to 0x05e6 */
}
} else { /* interrupt without message? */
/* jump to 0x06b9 */
/* save ar0, r08 */
mem[v_0350]=0; /* empty message */
/* jump to 0x06ab */
v_0350++;
v_0352++;
/* restore ar0, r08 */
/* jump to 0x05e6 */
}
/* 0x05e6 */
/* restore ax0.h,ac0.h,ac0.m, and ac0.l */
SBSET(5);
/* RTI */
}
/* set up some registers */
void fcn_0057() {
SBCLR(2);
SBCLR(3);
SBCLR(4);
SBCLR(6);
S40(); /* 40-bit mode */
CLR15();
M0(); /* don't multiply result by 2 */
r08=-1;
r09=-1;
r0a=-1;
r0b=-1;
config=0xff;
}
void fcn_0688() {
v_0350=0x0280;
v_0351=0x0280;
v_0352=0;
}
void fcn_04c0() {
config=0xff;
for(i=0xff,ar0=0xb00;i>0;i--) mem[ar0++]=0;
mem[ar0++]=0; /* get the last one */
fcn_0573(0x0b00,0x0100,0);
}
/* a=an address in ac1.m, l=a length in ar0, v=a value? in ac0.m */
void fcn_0573(short a, short l, short v) {
fcn_0561(a,l,0x0001);
}
/* a=an address in ac1.m, l=a length in ar0, v=a value? in ac0.m, f is a flag? in ac0.h */
/* return is in ax0.h */
short fcn_0561(short a, short l, short v, short f) {
register_ffd1=0x0a; /* unknown reg, accel? */
register_ffd6=-1; /* accel end addr H */
register_ffd7=-1; /* accel end addr L */
register_ffd8=v>>1; /*
register_ffd9=?; /* has a value from way back? */
return f;
}
/* initializes some tables that look useful... */
void fcn_0e14() {
a_04e8[0]=0x8240;
a_04e8[1]=0x7fff;
a_04e8[2]=0x7dbf;
a_04e8[3]=0x843f;
a_04f0[0]=0xb23b;
a_04f0[1]=0x7fff;
a_04f0[2]=0x4dc4;
a_04f0[3]=0xd808;
a_04ec[0]=a_04ec[1]=a_04ec[2]=a_04ec[3]=0;
a_04f4[0]=a_04f4[1]=a_04f4[2]=a_04f4[3]=0;
}
/* send a message via DSP MBOX */
void fcn_066a(short m) {
fcn_0682(); /* wait for empty mbox */
register_fffc=0xdcd1;
register_fffd=m;
register_fffb=1; /* IRQ */
fcn_0682();
}
/* wait for dsp mbox empty */
void fcn_0682() {
while (register_fffc&0x8000);
}
void fcn_0674(short m) {
fcn_0682();
register_fffc=0xf355;
register_fffd=m;
fcn_0682();
}
/* a=address in ar0 */
/* fetch a message body (up to zero)? */
short fcn_0067(short a) {
i=0x0357;
j=a;
do {
mem[j++]=mem[i++];
mem[j++]=mem[i];
} while (mem[i++]);
return a;
}
/* dma in, I assume */
/* size=words to transfer in ar0, addrL=low word of RAM address in ac0.l, addrH=high word of RAM address in ac0.m, dspaddr=dsp address in ac1.m */
void fcn_0525(short size, short addrH, short addrL, short dspaddr) {
register_ffcd=dspaddr; /* dsp address */
register_ffc9=0; /* direction: ram->dsp */
register_ffce=addrH; /* memory address H */
register_ffcf=addrL; /* memory address L */
register_ffcb=size<<1; /* bytes to transfer (size must be in words) */
fcn_0536(); /* dma wait */
}
/* dma wait? */
void fcn_0536() {
while (!(register_ffc9&4));
}
/* dma out, I assume */
/* size=words to transfer in ar0, addrL=low word of RAM address is ac0.l, addrH=high word of RAM address in ac0.m, dspaddr=dsp address in ac1.m */
/* shares code with fcn_0525 */
void fcn_0523(short size, short addrH, short addrL, shot dspaddr) {
register_ffcd=dspaddr;
/* jump back into 0525 */
register_ffc9=1; /* direction dsp->ram */
register_ffce=addrH;
register_ffcf=addrL;
register_ffcb=size<<1;
fcn_0536();
}
/* huge subroutine, op #2 */
void sub_0243() {
fcn_0067(0x0388); /* called in an indirect manner... */
v_0341=v_0344; /* low byte first word of message */
v_038e=v_0345;
v_0355=0;
fcn_022a(); /* get stuffs */
fcn_05a4(); /* write to accel */
for (i=v_0341;i>0i--) {
fcn_0102();
}
}
void fcn_022a() {
/* something else must set 386, 387 */
fcn_0525(0x0040,v_0386,v_0387,0x03a8);
}
void fcn_05a4() {
register_ffd4=-1;
register_ffd5=-1;
register_ffd6=-1;
register_ffd7=-1;
}
void fcn_0102() {
for (i=0;i<0x50;i++) a_0d00[i]=0;
for (i=0;i<0x50;i++) a_0d60[i]=0;
fcn_0e3f();
for (i=0;i<0x50;i++) a_0ca0[i]=0;
for (i=0;i<0x50;i++) a_0f40[i]=0;
for (i=0;i<0x50;i++) a_0fa0[i]=0;
for (i=0;i<0x50;i++) a_0a00[i]=0;
for (i=0;i<0x50;i++) a_09a0[i]=0;
}
void fcn_0e3f() {
fcn_00fa(0x0f40,0x0b00,0x50,0x6784);
fcn_0ba4(0x04e8,0x0b00,0x04ec);
}
/* addr1=address in ar0, addr2=address in ar3, size=size of table at addr1 in ac1.m, val=in ax0.l */
void fcn_00fa(short addr1, short addr2, short size, short val) {
M2(); /* all multiplications 2x */
tmp=mem[addr1++];
prod=val*tmp*2;
tmp=mem[addr1++];
ac0.m=prod;
prod=val*tmp*2;
tmp=mem[addr1++];
do {
ac0.m=prod;
prod=val*tmp*2;
mem[addr2]=ac0.m;
tmp=mem[addr1];
addr1++;
addr2++;
} while (--size);
M0();
}
/* addr1=address in ar0 (source 4 element table?), addr2=address in ar1 (accelerator?), addr3=address in ar2 (destination 4 element table?) */
void fcn_00ba4(short addr1, short addr2, short addr3) {
}

34
docs/DSP/zeldaNotes.txt Normal file
View File

@ -0,0 +1,34 @@
DSP startup sequence:
DspBoot called with (JASystem::TAudioThread::syncDSP()) as a parameter.
DSP lib initialized
A Dsp task is created:
init callback = DspHandShake()
req callback = JASystem::TAudioThread::syncDSP()
Task is pushed as first task and executed
DSP send DSP_INIT command (0xDCD10003)
__DSPHandler receive the command
task's init callback (DspHandShake) is called
1 mail is read from dsp (and discarded)
DSP flag is set as running
AIRegisterDMACallback(JASystem::TAudioThread::syncAudio((void))
AIStartDMA() to initialize dma in AI module
-----------------------------------
DSP run sequence:
__DSPHandler receive command DSP_RESUME
callback JASystem::TAudioThread::syncDSP called and pull 1 mail
A message is send by OSSendMessage(1)
JASystem::TAudioThread::audioproc receive OSMessage:
0=update dac
1=update dsp
2=nop ?
3=exit thread
dsp is updated

Binary file not shown.

View File

@ -0,0 +1,200 @@
chaoscode@chaoscode-desktop:~$ sudo hcidump -x -p 1 -R -w rawdump4.bin
[sudo] password for chaoscode:
HCI sniffer - Bluetooth packet analyzer ver 1.40
device: hci0 snap_len: 1028 filter: 0x0
chaoscode@chaoscode-desktop:~$ hcidump -r rawdump4.bin -X
HCI sniffer - Bluetooth packet analyzer ver 1.40
< HCI Command: Create Connection (0x01|0x0005) plen 13
0000: d7 c8 d9 47 21 00 18 cc 02 00 00 00 01 ...G!........
> HCI Event: Command Status (0x0f) plen 4
0000: 00 01 05 04 ....
> HCI Event: Connect Complete (0x03) plen 11
0000: 00 0c 00 d7 c8 d9 47 21 00 01 00 ......G!...
< ACL data: handle 12 flags 0x02 dlen 10
L2CAP(s): Info req: type 2
< HCI Command: Read Remote Supported Features (0x01|0x001b) plen 2
0000: 0c 00 ..
> HCI Event: Command Status (0x0f) plen 4
0000: 00 01 1b 04 ....
< HCI Command: Write Link Policy Settings (0x02|0x000d) plen 4
0000: 0c 00 0f 00 ....
> HCI Event: Read Remote Supported Features (0x0b) plen 11
0000: 00 0c 00 bc 02 04 38 08 00 00 00 ......8....
> HCI Event: Command Complete (0x0e) plen 6
0000: 01 0d 08 00 0c 00 ......
< HCI Command: Remote Name Request (0x01|0x0019) plen 10
0000: d7 c8 d9 47 21 00 02 00 00 00 ...G!.....
> HCI Event: Command Status (0x0f) plen 4
0000: 00 01 19 04 ....
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Info rsp: type 2 result 0
Extended feature mask 0x0004
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Connect req: psm 1 scid 0x0040
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Connect rsp: dcid 0x0051 scid 0x0040 result 0 status 0
Connection successful
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Config req: dcid 0x0051 flags 0x00 clen 0
> ACL data: handle 12 flags 0x02 dlen 18
L2CAP(s): Config rsp: scid 0x0040 flags 0x00 result 0 clen 4
Success
MTU 185
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Config req: dcid 0x0040 flags 0x00 clen 4
MTU 185
< ACL data: handle 12 flags 0x02 dlen 18
L2CAP(s): Config rsp: scid 0x0051 flags 0x00 result 0 clen 4
Success
MTU 185
< ACL data: handle 12 flags 0x02 dlen 23
L2CAP(d): cid 0x0051 len 19 [psm 1]
SDP SA Req: tid 0x0 len 0xe
handle 0x10000
max 65535
aid(s) 0x0000 - 0xffff
cont 00
> HCI Event: Remote Name Req Complete (0x07) plen 255
0000: 00 d7 c8 d9 47 21 00 4e 69 6e 74 65 6e 64 6f 20 ....G!.Nintendo
0010: 52 56 4c 2d 43 4e 54 2d 30 31 00 00 00 00 00 00 RVL-CNT-01......
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0080: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
0090: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...............
> HCI Event: Number of Completed Packets (0x13) plen 5
0000: 01 0c 00 04 00 .....
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 24
L2CAP(d): cid 0x0040 len 128 [psm 1]
SDP SA Rsp: tid 0x0 len 0x7b
count 118
cont 02 00 76
< ACL data: handle 12 flags 0x02 dlen 25
L2CAP(d): cid 0x0051 len 21 [psm 1]
SDP SA Req: tid 0x1 len 0x10
handle 0x10000
max 65535
aid(s) 0x0000 - 0xffff
cont 02 00 76
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 24
L2CAP(d): cid 0x0040 len 128 [psm 1]
SDP SA Rsp: tid 0x1 len 0x7b
count 118
cont 02 00 EC
< ACL data: handle 12 flags 0x02 dlen 25
L2CAP(d): cid 0x0051 len 21 [psm 1]
SDP SA Req: tid 0x2 len 0x10
handle 0x10000
max 65535
aid(s) 0x0000 - 0xffff
cont 02 00 EC
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 24
L2CAP(d): cid 0x0040 len 128 [psm 1]
SDP SA Rsp: tid 0x2 len 0x7b
count 118
cont 02 01 62
< ACL data: handle 12 flags 0x02 dlen 25
L2CAP(d): cid 0x0051 len 21 [psm 1]
SDP SA Req: tid 0x3 len 0x10
handle 0x10000
max 65535
aid(s) 0x0000 - 0xffff
cont 02 01 62
> HCI Event: Number of Completed Packets (0x13) plen 5
0000: 01 0c 00 04 00 .....
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 13
L2CAP(d): cid 0x0040 len 117 [psm 1]
SDP SA Rsp: tid 0x3 len 0x70
count 109
aid 0x0000 (SrvRecHndl)
uint 0x10000
aid 0x0001 (SrvClassIDList)
< uuid-16 0x1124 (HID) >
aid 0x0004 (ProtocolDescList)
< < uuid-16 0x0100 (L2CAP) uint 0x11 > <
uuid-16 0x0011 (HIDP) > >
aid 0x0005 (BrwGrpList)
< uuid-16 0x1002 (PubBrwsGrp) >
aid 0x0006 (LangBaseAttrIDList)
< uint 0x656e uint 0x6a uint 0x100 >
aid 0x0009 (BTProfileDescList)
< < uuid-16 0x1124 (HID) uint 0x100 > >
aid 0x000d (IconURL)
< < < uuid-16 0x0100 (L2CAP) uint 0x13 > < uuid-16 0x0011 (HIDP) > > >
aid 0x0100 (SrvName)
str "Nintendo RVL-CNT-01"
aid 0x0101 (SrvDesc)
str "Nintendo RVL-CNT-01"
aid 0x0102 (ProviderName)
str "Nintendo"
aid 0x0200 (VersionNumList)
uint 0x100
aid 0x0201 (SrvDBState)
uint 0x111
aid 0x0202 (unknown)
uint 0x4
aid 0x0203 (unknown)
uint 0x33
aid 0x0204 (unknown)
bool 0x0
aid 0x0205 (unknown)
bool 0x1
aid 0x0206 (unknown)
< < uint 0x22 str 05 01 09 05 a1 01 85 10 15 00 26 ff 00 75 08 95 01 06 00 ff 09 01 91 00 85 11 95 01 09 01 91 00 85 12 95 02 09 01 91 00 85 13 95 01 09 01 91 00 85 14 95 01 09 01 91 00 85 15 95 01 09 01 91 00 85 16 95 15 09 01 91 00 85 17 95 06 09 01 91 00 85 18 95 15 09 01 91 00 85 19 95 01 09 01 91 00 85 1a 95 01 09 01 91 00 85 20 95 06 09 01 81 00 85 21 95 15 09 01 81 00 85 22 95 04 09 01 81 00 85 30 95 02 09 01 81 00 85 31 95 05 09 01 81 00 85 32 95 0a 09 01 81 00 85 33 95 11 09 01 81 00 85 34 95 15 09 01 81 00 85 35 95 15 09 01 81 00 85 36 95 15 09 01 81 00 85 37 95 15 09 01 81 00 85 3d 95 15 09 01 81 00 85 3e 95 15 09 01 81 00 85 3f 95 15 09 01 81 00 c0 > >
aid 0x0207 (unknown)
< < uint 0x409 uint 0x100 > >
aid 0x0208 (unknown)
bool 0x0
aid 0x0209 (unknown)
bool 0x1
aid 0x020a (unknown)
bool 0x1
aid 0x020b (unknown)
uint 0x100
aid 0x020c (unknown)
uint 0xc80
aid 0x020d (unknown)
bool 0x0
aid 0x020e (unknown)
bool 0x0
cont 00
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Disconn req: dcid 0x0051 scid 0x0040
> ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Disconn rsp: dcid 0x0051 scid 0x0040
> HCI Event: Number of Completed Packets (0x13) plen 5
0000: 01 0c 00 01 00 .....
< HCI Command: Disconnect (0x01|0x0006) plen 3
0000: 0c 00 13 ...
> HCI Event: Command Status (0x0f) plen 4
0000: 00 01 06 04 ....
> HCI Event: Disconn Complete (0x05) plen 4
0000: 00 0c 00 16 ....
chaoscode@chaoscode-desktop:~$

Binary file not shown.

View File

@ -0,0 +1,176 @@
HCI sniffer - Bluetooth packet analyzer ver 1.40
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
< HCI Command: Inquiry (0x01|0x0001) plen 5
lap 0x9e8b33 len 8 num 0
> HCI Event: Command Status (0x0f) plen 4
Inquiry (0x01|0x0001) status 0x00 ncmd 1
< HCI Command: Inquiry Cancel (0x01|0x0002) plen 0
> HCI Event: Command Complete (0x0e) plen 4
Inquiry Cancel (0x01|0x0002) ncmd 1
status 0x00
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
< HCI Command: Inquiry (0x01|0x0001) plen 5
lap 0x9e8b33 len 8 num 0
> HCI Event: Command Status (0x0f) plen 4
Inquiry (0x01|0x0001) status 0x00 ncmd 1
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 10 00 .0..
> HCI Event: Inquiry Complete (0x01) plen 1
status 0x00
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 10 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
< HCI Command: Create Connection (0x01|0x0005) plen 13
bdaddr 00:1F:C5:36:2B:32 ptype 0xcc18 rswitch 0x01 clkoffset 0x0000
Packet type: DM1 DM3 DM5 DH1 DH3 DH5
> HCI Event: Command Status (0x0f) plen 4
Create Connection (0x01|0x0005) status 0x00 ncmd 1
< HCI Command: Create Connection Cancel (0x01|0x0008) plen 6
bdaddr 00:1F:C5:36:2B:32
> HCI Event: Command Complete (0x0e) plen 10
Create Connection Cancel (0x01|0x0008) ncmd 1
status 0x00 bdaddr 00:1F:C5:36:2B:32
> HCI Event: Connect Complete (0x03) plen 11
status 0x02 handle 12 bdaddr 00:1F:C5:36:2B:32 type ACL encrypt 0x00
Error: Unknown Connection Identifier
< HCI Command: Create Connection (0x01|0x0005) plen 13
bdaddr 00:1F:C5:36:2B:32 ptype 0xcc18 rswitch 0x01 clkoffset 0x0000
Packet type: DM1 DM3 DM5 DH1 DH3 DH5
> HCI Event: Command Status (0x0f) plen 4
Create Connection (0x01|0x0005) status 0x00 ncmd 1
> HCI Event: Connect Complete (0x03) plen 11
status 0x00 handle 12 bdaddr 00:1F:C5:36:2B:32 type ACL encrypt 0x00
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Connect req: psm 1 scid 0x0040
< HCI Command: Read Remote Supported Features (0x01|0x001b) plen 2
handle 12
> HCI Event: Command Status (0x0f) plen 4
Read Remote Supported Features (0x01|0x001b) status 0x00 ncmd 1
< HCI Command: Write Link Policy Settings (0x02|0x000d) plen 4
handle 12 policy 0x0f
Link policy: RSWITCH HOLD SNIFF PARK
> HCI Event: Read Remote Supported Features (0x0b) plen 11
status 0x00 handle 12
Features: 0xbc 0x02 0x04 0x38 0x08 0x00 0x00 0x00
> HCI Event: Command Complete (0x0e) plen 6
Write Link Policy Settings (0x02|0x000d) ncmd 1
status 0x00 handle 12
< HCI Command: Remote Name Request (0x01|0x0019) plen 10
bdaddr 00:1F:C5:36:2B:32 mode 2 clkoffset 0x0000
> HCI Event: Command Status (0x0f) plen 4
Remote Name Request (0x01|0x0019) status 0x00 ncmd 1
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Connect rsp: dcid 0x0043 scid 0x0040 result 0 status 0
Connection successful
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Config req: dcid 0x0043 flags 0x00 clen 0
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 2
> ACL data: handle 12 flags 0x02 dlen 18
L2CAP(s): Config rsp: scid 0x0040 flags 0x00 result 0 clen 4
Success
MTU 185
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Config req: dcid 0x0040 flags 0x00 clen 4
MTU 185
< ACL data: handle 12 flags 0x02 dlen 18
L2CAP(s): Config rsp: scid 0x0043 flags 0x00 result 0 clen 4
Success
MTU 185
< ACL data: handle 12 flags 0x02 dlen 23
L2CAP(d): cid 0x0043 len 19 [psm 1]
SDP SA Req: tid 0x0 len 0xe
handle 0x10001
max 65535
aid(s) 0x0000 - 0xffff
cont 00
> HCI Event: Remote Name Req Complete (0x07) plen 255
status 0x00 bdaddr 00:1F:C5:36:2B:32 name 'Nintendo RVL-CNT-01'
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 2
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 24
L2CAP(d): cid 0x0040 len 101 [psm 1]
SDP SA Rsp: tid 0x0 len 0x60
count 93
aid 0x0000 (SrvRecHndl)
uint 0x10001
aid 0x0001 (SrvClassIDList)
< uuid-16 0x1200 (PNPInfo) >
aid 0x0004 (ProtocolDescList)
< < uuid-16 0x0100 (L2CAP) uint 0x1 > <
uuid-16 0x0001 (SDP) > >
aid 0x0005 (BrwGrpList)
< uuid-16 0x1002 (PubBrwsGrp) >
aid 0x0009 (BTProfileDescList)
< < uuid-16 0x1200 (PNPInfo) uint 0x100 > >
aid 0x0200 (VersionNumList)
uint 0x100
aid 0x0201 (SrvDBState)
uint 0x57e
aid 0x0202 (unknown)
uint 0x306
aid 0x0203 (unknown)
uint 0x600
aid 0x0204 (unknown)
bool 0x1
aid 0x0205 (unknown)
uint 0x2
cont 00
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Disconn req: dcid 0x0043 scid 0x0040
> ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Disconn rsp: dcid 0x0043 scid 0x0040
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 1
< HCI Command: Disconnect (0x01|0x0006) plen 3
handle 12 reason 0x13
Reason: Remote User Terminated Connection
> HCI Event: Command Status (0x0f) plen 4
Disconnect (0x01|0x0006) status 0x00 ncmd 1
> HCI Event: Disconn Complete (0x05) plen 4
status 0x00 handle 12 reason 0x16
Reason: Connection Terminated by Local Host

Binary file not shown.

View File

@ -0,0 +1,356 @@
HCI sniffer - Bluetooth packet analyzer ver 1.40
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
< HCI Command: Inquiry (0x01|0x0001) plen 5
lap 0x9e8b33 len 8 num 0
> HCI Event: Command Status (0x0f) plen 4
Inquiry (0x01|0x0001) status 0x00 ncmd 1
< HCI Command: Inquiry Cancel (0x01|0x0002) plen 0
> HCI Event: Command Complete (0x0e) plen 4
Inquiry Cancel (0x01|0x0002) ncmd 1
status 0x00
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
< HCI Command: Inquiry (0x01|0x0001) plen 5
lap 0x9e8b33 len 8 num 0
> HCI Event: Command Status (0x0f) plen 4
Inquiry (0x01|0x0001) status 0x00 ncmd 1
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 10 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 10 00 .0..
> HCI Event: Inquiry Complete (0x01) plen 1
status 0x00
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 10 00 .0..
> ACL data: handle 12 flags 0x02 dlen 8
L2CAP(d): cid 0x0041 len 4 [psm 0]
0000: a1 30 00 00 .0..
< HCI Command: Create Connection (0x01|0x0005) plen 13
bdaddr 00:1F:C5:36:2B:32 ptype 0xcc18 rswitch 0x01 clkoffset 0x0000
Packet type: DM1 DM3 DM5 DH1 DH3 DH5
> HCI Event: Command Status (0x0f) plen 4
Create Connection (0x01|0x0005) status 0x00 ncmd 1
< HCI Command: Create Connection Cancel (0x01|0x0008) plen 6
bdaddr 00:1F:C5:36:2B:32
> HCI Event: Command Complete (0x0e) plen 10
Create Connection Cancel (0x01|0x0008) ncmd 1
status 0x00 bdaddr 00:1F:C5:36:2B:32
> HCI Event: Connect Complete (0x03) plen 11
status 0x02 handle 12 bdaddr 00:1F:C5:36:2B:32 type ACL encrypt 0x00
Error: Unknown Connection Identifier
< HCI Command: Create Connection (0x01|0x0005) plen 13
bdaddr 00:1F:C5:36:2B:32 ptype 0xcc18 rswitch 0x01 clkoffset 0x0000
Packet type: DM1 DM3 DM5 DH1 DH3 DH5
> HCI Event: Command Status (0x0f) plen 4
Create Connection (0x01|0x0005) status 0x00 ncmd 1
> HCI Event: Connect Complete (0x03) plen 11
status 0x00 handle 12 bdaddr 00:1F:C5:36:2B:32 type ACL encrypt 0x00
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Connect req: psm 1 scid 0x0040
< HCI Command: Read Remote Supported Features (0x01|0x001b) plen 2
handle 12
> HCI Event: Command Status (0x0f) plen 4
Read Remote Supported Features (0x01|0x001b) status 0x00 ncmd 1
< HCI Command: Write Link Policy Settings (0x02|0x000d) plen 4
handle 12 policy 0x0f
Link policy: RSWITCH HOLD SNIFF PARK
> HCI Event: Read Remote Supported Features (0x0b) plen 11
status 0x00 handle 12
Features: 0xbc 0x02 0x04 0x38 0x08 0x00 0x00 0x00
> HCI Event: Command Complete (0x0e) plen 6
Write Link Policy Settings (0x02|0x000d) ncmd 1
status 0x00 handle 12
< HCI Command: Remote Name Request (0x01|0x0019) plen 10
bdaddr 00:1F:C5:36:2B:32 mode 2 clkoffset 0x0000
> HCI Event: Command Status (0x0f) plen 4
Remote Name Request (0x01|0x0019) status 0x00 ncmd 1
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Connect rsp: dcid 0x0043 scid 0x0040 result 0 status 0
Connection successful
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Config req: dcid 0x0043 flags 0x00 clen 0
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 2
> ACL data: handle 12 flags 0x02 dlen 18
L2CAP(s): Config rsp: scid 0x0040 flags 0x00 result 0 clen 4
Success
MTU 185
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Config req: dcid 0x0040 flags 0x00 clen 4
MTU 185
< ACL data: handle 12 flags 0x02 dlen 18
L2CAP(s): Config rsp: scid 0x0043 flags 0x00 result 0 clen 4
Success
MTU 185
< ACL data: handle 12 flags 0x02 dlen 23
L2CAP(d): cid 0x0043 len 19 [psm 1]
SDP SA Req: tid 0x0 len 0xe
handle 0x10001
max 65535
aid(s) 0x0000 - 0xffff
cont 00
> HCI Event: Remote Name Req Complete (0x07) plen 255
status 0x00 bdaddr 00:1F:C5:36:2B:32 name 'Nintendo RVL-CNT-01'
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 2
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 24
L2CAP(d): cid 0x0040 len 101 [psm 1]
SDP SA Rsp: tid 0x0 len 0x60
count 93
aid 0x0000 (SrvRecHndl)
uint 0x10001
aid 0x0001 (SrvClassIDList)
< uuid-16 0x1200 (PNPInfo) >
aid 0x0004 (ProtocolDescList)
< < uuid-16 0x0100 (L2CAP) uint 0x1 > <
uuid-16 0x0001 (SDP) > >
aid 0x0005 (BrwGrpList)
< uuid-16 0x1002 (PubBrwsGrp) >
aid 0x0009 (BTProfileDescList)
< < uuid-16 0x1200 (PNPInfo) uint 0x100 > >
aid 0x0200 (VersionNumList)
uint 0x100
aid 0x0201 (SrvDBState)
uint 0x57e
aid 0x0202 (unknown)
uint 0x306
aid 0x0203 (unknown)
uint 0x600
aid 0x0204 (unknown)
bool 0x1
aid 0x0205 (unknown)
uint 0x2
cont 00
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Disconn req: dcid 0x0043 scid 0x0040
> ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Disconn rsp: dcid 0x0043 scid 0x0040
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 1
< HCI Command: Disconnect (0x01|0x0006) plen 3
handle 12 reason 0x13
Reason: Remote User Terminated Connection
> HCI Event: Command Status (0x0f) plen 4
Disconnect (0x01|0x0006) status 0x00 ncmd 1
> HCI Event: Disconn Complete (0x05) plen 4
status 0x00 handle 12 reason 0x16
Reason: Connection Terminated by Local Host
< HCI Command: Create Connection (0x01|0x0005) plen 13
bdaddr 00:1F:C5:36:2B:32 ptype 0xcc18 rswitch 0x01 clkoffset 0x0000
Packet type: DM1 DM3 DM5 DH1 DH3 DH5
> HCI Event: Command Status (0x0f) plen 4
Create Connection (0x01|0x0005) status 0x00 ncmd 1
> HCI Event: Connect Complete (0x03) plen 11
status 0x00 handle 12 bdaddr 00:1F:C5:36:2B:32 type ACL encrypt 0x00
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Connect req: psm 1 scid 0x0040
< HCI Command: Read Remote Supported Features (0x01|0x001b) plen 2
handle 12
> HCI Event: Command Status (0x0f) plen 4
Read Remote Supported Features (0x01|0x001b) status 0x00 ncmd 1
< HCI Command: Write Link Policy Settings (0x02|0x000d) plen 4
handle 12 policy 0x0f
Link policy: RSWITCH HOLD SNIFF PARK
> HCI Event: Read Remote Supported Features (0x0b) plen 11
status 0x00 handle 12
Features: 0xbc 0x02 0x04 0x38 0x08 0x00 0x00 0x00
> HCI Event: Command Complete (0x0e) plen 6
Write Link Policy Settings (0x02|0x000d) ncmd 1
status 0x00 handle 12
< HCI Command: Remote Name Request (0x01|0x0019) plen 10
bdaddr 00:1F:C5:36:2B:32 mode 2 clkoffset 0x0000
> HCI Event: Command Status (0x0f) plen 4
Remote Name Request (0x01|0x0019) status 0x00 ncmd 1
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Connect rsp: dcid 0x0045 scid 0x0040 result 0 status 0
Connection successful
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Config req: dcid 0x0045 flags 0x00 clen 0
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 2
> ACL data: handle 12 flags 0x02 dlen 18
L2CAP(s): Config rsp: scid 0x0040 flags 0x00 result 0 clen 4
Success
MTU 185
> ACL data: handle 12 flags 0x02 dlen 16
L2CAP(s): Config req: dcid 0x0040 flags 0x00 clen 4
MTU 185
< ACL data: handle 12 flags 0x02 dlen 18
L2CAP(s): Config rsp: scid 0x0045 flags 0x00 result 0 clen 4
Success
MTU 185
< ACL data: handle 12 flags 0x02 dlen 24
L2CAP(d): cid 0x0045 len 20 [psm 1]
SDP SSA Req: tid 0x0 len 0xf
pat uuid-16 0x1124 (HID)
max 65535
aid(s) 0x0000 - 0xffff
cont 00
> HCI Event: Remote Name Req Complete (0x07) plen 255
status 0x00 bdaddr 00:1F:C5:36:2B:32 name 'Nintendo RVL-CNT-01'
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 2
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 24
L2CAP(d): cid 0x0040 len 128 [psm 1]
SDP SSA Rsp: tid 0x0 len 0x7b
count 118
cont 02 00 76
< ACL data: handle 12 flags 0x02 dlen 26
L2CAP(d): cid 0x0045 len 22 [psm 1]
SDP SSA Req: tid 0x1 len 0x11
pat uuid-16 0x1124 (HID)
max 65535
aid(s) 0x0000 - 0xffff
cont 02 00 76
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 24
L2CAP(d): cid 0x0040 len 128 [psm 1]
SDP SSA Rsp: tid 0x1 len 0x7b
count 118
cont 02 00 EC
< ACL data: handle 12 flags 0x02 dlen 26
L2CAP(d): cid 0x0045 len 22 [psm 1]
SDP SSA Req: tid 0x2 len 0x11
pat uuid-16 0x1124 (HID)
max 65535
aid(s) 0x0000 - 0xffff
cont 02 00 EC
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 2
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 24
L2CAP(d): cid 0x0040 len 128 [psm 1]
SDP SSA Rsp: tid 0x2 len 0x7b
count 118
cont 02 01 62
< ACL data: handle 12 flags 0x02 dlen 26
L2CAP(d): cid 0x0045 len 22 [psm 1]
SDP SSA Req: tid 0x3 len 0x11
pat uuid-16 0x1124 (HID)
max 65535
aid(s) 0x0000 - 0xffff
cont 02 01 62
> ACL data: handle 12 flags 0x02 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 27
> ACL data: handle 12 flags 0x01 dlen 16
L2CAP(d): cid 0x0040 len 120 [psm 1]
SDP SSA Rsp: tid 0x3 len 0x73
count 112
record #0
aid 0x0000 (SrvRecHndl)
uint 0x10000
aid 0x0001 (SrvClassIDList)
< uuid-16 0x1124 (HID) >
aid 0x0004 (ProtocolDescList)
< < uuid-16 0x0100 (L2CAP) uint 0x11 > <
uuid-16 0x0011 (HIDP) > >
aid 0x0005 (BrwGrpList)
< uuid-16 0x1002 (PubBrwsGrp) >
aid 0x0006 (LangBaseAttrIDList)
< uint 0x656e uint 0x6a uint 0x100 >
aid 0x0009 (BTProfileDescList)
< < uuid-16 0x1124 (HID) uint 0x100 > >
aid 0x000d (IconURL)
< < < uuid-16 0x0100 (L2CAP) uint 0x13 > < uuid-16 0x0011 (HIDP) > > >
aid 0x0100 (SrvName)
str "Nintendo RVL-CNT-01"
aid 0x0101 (SrvDesc)
str "Nintendo RVL-CNT-01"
aid 0x0102 (ProviderName)
str "Nintendo"
aid 0x0200 (VersionNumList)
uint 0x100
aid 0x0201 (SrvDBState)
uint 0x111
aid 0x0202 (unknown)
uint 0x4
aid 0x0203 (unknown)
uint 0x33
aid 0x0204 (unknown)
bool 0x0
aid 0x0205 (unknown)
bool 0x1
aid 0x0206 (unknown)
< < uint 0x22 str 05 01 09 05 a1 01 85 10 15 00 26 ff 00 75 08 95 01 06 00 ff 09 01 91 00 85 11 95 01 09 01 91 00 85 12 95 02 09 01 91 00 85 13 95 01 09 01 91 00 85 14 95 01 09 01 91 00 85 15 95 01 09 01 91 00 85 16 95 15 09 01 91 00 85 17 95 06 09 01 91 00 85 18 95 15 09 01 91 00 85 19 95 01 09 01 91 00 85 1a 95 01 09 01 91 00 85 20 95 06 09 01 81 00 85 21 95 15 09 01 81 00 85 22 95 04 09 01 81 00 85 30 95 02 09 01 81 00 85 31 95 05 09 01 81 00 85 32 95 0a 09 01 81 00 85 33 95 11 09 01 81 00 85 34 95 15 09 01 81 00 85 35 95 15 09 01 81 00 85 36 95 15 09 01 81 00 85 37 95 15 09 01 81 00 85 3d 95 15 09 01 81 00 85 3e 95 15 09 01 81 00 85 3f 95 15 09 01 81 00 c0 > >
aid 0x0207 (unknown)
< < uint 0x409 uint 0x100 > >
aid 0x0208 (unknown)
bool 0x0
aid 0x0209 (unknown)
bool 0x1
aid 0x020a (unknown)
bool 0x1
aid 0x020b (unknown)
uint 0x100
aid 0x020c (unknown)
uint 0xc80
aid 0x020d (unknown)
bool 0x0
aid 0x020e (unknown)
bool 0x0
cont 00
< ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Disconn req: dcid 0x0045 scid 0x0040
> HCI Event: Number of Completed Packets (0x13) plen 5
handle 12 packets 2
> ACL data: handle 12 flags 0x02 dlen 12
L2CAP(s): Disconn rsp: dcid 0x0045 scid 0x0040
< HCI Command: Disconnect (0x01|0x0006) plen 3
handle 12 reason 0x13
Reason: Remote User Terminated Connection
> HCI Event: Command Status (0x0f) plen 4
Disconnect (0x01|0x0006) status 0x00 ncmd 1
> HCI Event: Disconn Complete (0x05) plen 4
status 0x00 handle 12 reason 0x16
Reason: Connection Terminated by Local Host

Binary file not shown.