VertexLoader: add new JIT

This commit is contained in:
Tillmann Karras 2015-01-15 01:46:23 +01:00
parent eb13aa43fe
commit e82e9f97f5
9 changed files with 438 additions and 40 deletions

View File

@ -45,7 +45,7 @@ set(SRCS BoundingBox.cpp
set(LIBS core png)
if(_M_X86)
set(SRCS ${SRCS} TextureDecoder_x64.cpp)
set(SRCS ${SRCS} TextureDecoder_x64.cpp VertexLoaderX64.cpp)
else()
set(SRCS ${SRCS} TextureDecoder_Generic.cpp)
endif()

View File

@ -20,10 +20,13 @@ enum
// Vertex components
enum
{
NOT_PRESENT = 0,
DIRECT = 1,
INDEX8 = 2,
INDEX16 = 3,
NOT_PRESENT = 0,
DIRECT = 1,
INDEX8 = 2,
INDEX16 = 3,
MASK_INDEXED = 2,
MASK_ALL = 3,
};
enum

View File

@ -40,14 +40,9 @@ void VertexLoader::operator delete (void *p)
static void LOADERDECL PosMtx_ReadDirect_UByte(VertexLoader* loader)
{
BoundingBox::posMtxIdx = loader->m_curposmtx = DataReadU8() & 0x3f;
PRIM_LOG("posmtx: %d, ", loader->m_curposmtx);
}
static void LOADERDECL PosMtx_Write(VertexLoader* loader)
{
// u8, 0, 0, 0
DataWrite<u32>(loader->m_curposmtx);
u8 posmtx = BoundingBox::posMtxIdx = DataReadU8() & 0x3f;
DataWrite<u32>(posmtx);
PRIM_LOG("posmtx: %d, ", posmtx);
}
static void LOADERDECL TexMtx_ReadDirect_UByte(VertexLoader* loader)
@ -69,18 +64,16 @@ static void LOADERDECL TexMtx_Write_Float2(VertexLoader* loader)
DataWrite(float(loader->m_curtexmtx[loader->m_texmtxwrite++]));
}
static void LOADERDECL TexMtx_Write_Float4(VertexLoader* loader)
static void LOADERDECL TexMtx_Write_Float3(VertexLoader* loader)
{
#if _M_SSE >= 0x200
__m128 output = _mm_cvtsi32_ss(_mm_castsi128_ps(_mm_setzero_si128()), loader->m_curtexmtx[loader->m_texmtxwrite++]);
_mm_storeu_ps((float*)g_vertex_manager_write_ptr, _mm_shuffle_ps(output, output, 0x45 /* 1, 1, 0, 1 */));
g_vertex_manager_write_ptr += sizeof(float) * 4;
g_vertex_manager_write_ptr += sizeof(float) * 3;
#else
DataWrite(0.f);
DataWrite(0.f);
DataWrite(float(loader->m_curtexmtx[loader->m_texmtxwrite++]));
// Just to fill out with 0.
DataWrite(0.f);
#endif
}
@ -137,16 +130,22 @@ void VertexLoader::CompileVertexTranslator()
// Position in pc vertex format.
int nat_offset = 0;
memset(&m_native_vtx_decl, 0, sizeof(m_native_vtx_decl));
// Position Matrix Index
if (m_VtxDesc.PosMatIdx)
{
WriteCall(PosMtx_ReadDirect_UByte);
components |= VB_HAS_POSMTXIDX;
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = nat_offset;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
nat_offset += 4;
m_VertexSize += 1;
}
if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); }
@ -267,11 +266,7 @@ void VertexLoader::CompileVertexTranslator()
const int format = m_VtxAttr.texCoord[i].Format;
const int elements = m_VtxAttr.texCoord[i].Elements;
if (tc[i] == NOT_PRESENT)
{
components &= ~(VB_HAS_UV0 << i);
}
else
if (tc[i] != NOT_PRESENT)
{
_assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16, "Invalid texture coordinates!\n(tc[i] = %d)", (u32)tc[i]);
_assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT, "Invalid texture coordinates format!\n(format = %d)", format);
@ -295,9 +290,9 @@ void VertexLoader::CompileVertexTranslator()
else
{
components |= VB_HAS_UV0 << i; // have to include since using now
m_native_vtx_decl.texcoords[i].components = 4;
nat_offset += 16; // still include the texture coordinate, but this time as 6 + 2 bytes
WriteCall(TexMtx_Write_Float4);
m_native_vtx_decl.texcoords[i].components = 3;
nat_offset += 12;
WriteCall(TexMtx_Write_Float3);
}
}
else
@ -335,17 +330,6 @@ void VertexLoader::CompileVertexTranslator()
if (!g_ActiveConfig.backend_info.bSupportsBBox)
WriteCall(BoundingBox::Update);
if (m_VtxDesc.PosMatIdx)
{
WriteCall(PosMtx_Write);
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = nat_offset;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
nat_offset += 4;
}
// indexed position formats may skip a the vertex
if (m_VtxDesc.Position & 2)
{

View File

@ -58,7 +58,6 @@ public:
// Matrix components are first in GC format but later in PC format - we need to store it temporarily
// when decoding each vertex.
u8 m_curposmtx;
u8 m_curtexmtx[8];
int m_texmtxwrite;
int m_texmtxread;

View File

@ -10,11 +10,17 @@
#include "VideoCommon/VertexLoader.h"
#include "VideoCommon/VertexLoaderBase.h"
#ifdef _M_X86_64
#include "VideoCommon/VertexLoaderX64.h"
#endif
VertexLoaderBase::VertexLoaderBase(const TVtxDesc &vtx_desc, const VAT &vtx_attr)
{
m_numLoadedVertices = 0;
m_VertexSize = 0;
m_native_vertex_format = nullptr;
m_native_components = 0;
memset(&m_native_vtx_decl, 0, sizeof(m_native_vtx_decl));
SetVAT(vtx_attr);
m_VtxDesc = vtx_desc;
@ -198,15 +204,22 @@ VertexLoaderBase* VertexLoaderBase::CreateVertexLoader(const TVtxDesc& vtx_desc,
{
VertexLoaderBase* loader;
#if 0
//#define COMPARE_VERTEXLOADERS
#if defined(COMPARE_VERTEXLOADERS) && defined(_M_X86_64)
// first try: Any new VertexLoader vs the old one
loader = new VertexLoaderTester(
new VertexLoader(vtx_desc, vtx_attr), // the software one
new VertexLoader(vtx_desc, vtx_attr), // the new one to compare
new VertexLoaderX64(vtx_desc, vtx_attr), // the new one to compare
vtx_desc, vtx_attr);
if (loader->IsInitialized())
return loader;
delete loader;
#elif defined(_M_X86_64)
loader = new VertexLoaderX64(vtx_desc, vtx_attr);
if (loader->IsInitialized())
return loader;
delete loader;
#endif
// last try: The old VertexLoader

View File

@ -0,0 +1,373 @@
#ifdef _MSC_VER
#include <intrin.h>
#else
#include <x86intrin.h>
#endif
#include "Common/CPUDetect.h"
#include "Common/x64ABI.h"
#include "VideoCommon/VertexLoaderX64.h"
using namespace Gen;
static const X64Reg src_reg = ABI_PARAM1;
static const X64Reg dst_reg = ABI_PARAM2;
static const X64Reg count_reg = ABI_PARAM3;
static const X64Reg scratch1 = RAX;
static const X64Reg scratch2 = R8;
static const X64Reg skipped_reg = R9;
VertexLoaderX64::VertexLoaderX64(const TVtxDesc& vtx_desc, const VAT& vtx_att): VertexLoaderBase(vtx_desc, vtx_att)
{
if (!IsInitialized())
return;
AllocCodeSpace(4096);
ClearCodeSpace();
GenerateVertexLoader();
WriteProtect();
}
OpArg VertexLoaderX64::GetVertexAddr(int array, u64 attribute)
{
OpArg data = MDisp(src_reg, m_src_ofs);
if (attribute & MASK_INDEXED)
{
if (attribute == INDEX8)
{
MOVZX(64, 8, scratch1, data);
m_src_ofs += 1;
}
else
{
MOVZX(64, 16, scratch1, data);
m_src_ofs += 2;
// Convert to little-endian.
ROR(16, R(scratch1), Imm8(8));
}
if (array == ARRAY_POSITION)
{
CMP(attribute == INDEX8 ? 8 : 16, R(scratch1), Imm8(-1));
m_skip_vertex = J_CC(CC_E, true);
}
// TODO: Move cached_arraybases into CPState and use MDisp() relative to a constant register loaded with &g_main_cp_state.
IMUL(32, scratch1, M(&g_main_cp_state.array_strides[array]));
MOV(64, R(scratch2), M(&cached_arraybases[array]));
return MRegSum(scratch1, scratch2);
}
else
{
return data;
}
}
int VertexLoaderX64::ReadVertex(OpArg data, u64 attribute, int format, int count_in, int count_out, u8 scaling_exponent, AttributeFormat* native_format)
{
static const __m128i shuffle_lut[5][3] = {
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF00L), // 1x u8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF01L, 0xFFFFFF00L), // 2x u8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFF02L, 0xFFFFFF01L, 0xFFFFFF00L)}, // 3x u8
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00FFFFFFL), // 1x s8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL), // 2x s8
_mm_set_epi32(0xFFFFFFFFL, 0x02FFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL)}, // 3x s8
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0001L), // 1x u16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0203L, 0xFFFF0001L), // 2x u16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFF0405L, 0xFFFF0203L, 0xFFFF0001L)}, // 3x u16
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x0001FFFFL), // 1x s16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x0203FFFFL, 0x0001FFFFL), // 2x s16
_mm_set_epi32(0xFFFFFFFFL, 0x0405FFFFL, 0x0203FFFFL, 0x0001FFFFL)}, // 3x s16
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00010203L), // 1x float
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x04050607L, 0x00010203L), // 2x float
_mm_set_epi32(0xFFFFFFFFL, 0x08090A0BL, 0x04050607L, 0x00010203L)}, // 3x float
};
static const __m128 scale_factors[32] = {
_mm_set_ps1(1./(1u<< 0)), _mm_set_ps1(1./(1u<< 1)), _mm_set_ps1(1./(1u<< 2)), _mm_set_ps1(1./(1u<< 3)),
_mm_set_ps1(1./(1u<< 4)), _mm_set_ps1(1./(1u<< 5)), _mm_set_ps1(1./(1u<< 6)), _mm_set_ps1(1./(1u<< 7)),
_mm_set_ps1(1./(1u<< 8)), _mm_set_ps1(1./(1u<< 9)), _mm_set_ps1(1./(1u<<10)), _mm_set_ps1(1./(1u<<11)),
_mm_set_ps1(1./(1u<<12)), _mm_set_ps1(1./(1u<<13)), _mm_set_ps1(1./(1u<<14)), _mm_set_ps1(1./(1u<<15)),
_mm_set_ps1(1./(1u<<16)), _mm_set_ps1(1./(1u<<17)), _mm_set_ps1(1./(1u<<18)), _mm_set_ps1(1./(1u<<19)),
_mm_set_ps1(1./(1u<<20)), _mm_set_ps1(1./(1u<<21)), _mm_set_ps1(1./(1u<<22)), _mm_set_ps1(1./(1u<<23)),
_mm_set_ps1(1./(1u<<24)), _mm_set_ps1(1./(1u<<25)), _mm_set_ps1(1./(1u<<26)), _mm_set_ps1(1./(1u<<27)),
_mm_set_ps1(1./(1u<<28)), _mm_set_ps1(1./(1u<<29)), _mm_set_ps1(1./(1u<<30)), _mm_set_ps1(1./(1u<<31)),
};
X64Reg coords = XMM0;
int elem_size = 1 << (format / 2);
int load_bytes = elem_size * count_in;
if (load_bytes >= 8)
MOVDQU(coords, data);
else if (load_bytes >= 4)
MOVQ_xmm(coords, data);
else
MOVD_xmm(coords, data);
PSHUFB(coords, M(&shuffle_lut[format][count_in - 1]));
if (format != FORMAT_FLOAT)
{
// Sign extend
if (format == FORMAT_BYTE)
PSRAD(coords, 24);
if (format == FORMAT_SHORT)
PSRAD(coords, 16);
CVTDQ2PS(coords, R(coords));
if (scaling_exponent)
MULPS(coords, M(&scale_factors[scaling_exponent]));
}
OpArg dest = MDisp(dst_reg, m_dst_ofs);
switch (count_out)
{
case 1: MOVSS(dest, coords); break;
case 2: MOVLPS(dest, coords); break;
case 3: MOVUPS(dest, coords); break;
}
native_format->components = count_out;
native_format->enable = true;
native_format->offset = m_dst_ofs;
native_format->type = VAR_FLOAT;
native_format->integer = false;
m_dst_ofs += sizeof(float) * count_out;
if (attribute == DIRECT)
m_src_ofs += load_bytes;
return load_bytes;
}
// TODO: generate alternative code for pre-BMI2/MOVBE CPUs
void VertexLoaderX64::ReadColor(OpArg data, u64 attribute, int format, int elements)
{
int load_bytes = 0;
static const u32 mask_565 = 0xF8FCF800;
static const u32 mask_0f = 0x0F0F0F0F;
static const u32 mask_f0 = 0xF0F0F0F0;
static const u32 mask_fc = 0xFCFCFCFC;
switch (format)
{
case FORMAT_24B_888:
case FORMAT_32B_888x:
case FORMAT_32B_8888:
MOV(32, R(scratch1), data);
if (format != FORMAT_32B_8888 || !elements)
OR(32, R(scratch1), Imm32(0xFF000000));
MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1));
load_bytes = 3 + (format != FORMAT_24B_888);
break;
case FORMAT_16B_565:
// RRRRRGGG GGGBBBBB
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
MOVBE(16, scratch1, data);
PDEP(32, scratch1, scratch1, M(&mask_565));
MOV(32, R(scratch2), R(scratch1));
SHR(32, R(scratch1), Imm8(5));
AND(32, R(scratch1), Imm32(0x07000700));
OR(32, R(scratch1), R(scratch2));
SHR(32, R(scratch2), Imm8(6));
AND(32, R(scratch2), Imm32(0x00030000));
OR(32, R(scratch1), R(scratch2));
OR(8, R(scratch1), Imm8(0xFF));
MOVBE(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 2;
break;
case FORMAT_16B_4444:
// RRRRGGGG BBBBAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
MOVBE(16, scratch1, data);
PDEP(32, scratch2, scratch1, M(&mask_0f));
PDEP(32, scratch1, scratch1, M(&mask_f0));
OR(32, R(scratch1), R(scratch2));
MOVBE(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 2;
break;
case FORMAT_24B_6666:
// RRRRRRGG GGGGBBBB BBAAAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
data.offset -= 1;
MOVBE(32, scratch1, data);
PDEP(32, scratch1, scratch1, M(&mask_fc));
MOV(32, R(scratch2), R(scratch1));
SHR(32, R(scratch2), Imm8(6));
AND(32, R(scratch2), Imm32(0x03030303));
OR(32, R(scratch1), R(scratch2));
MOVBE(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 3;
break;
}
if (attribute == DIRECT)
m_src_ofs += load_bytes;
}
void VertexLoaderX64::GenerateVertexLoader()
{
// Backup count since we're going to count it down.
PUSH(32, R(count_reg));
if (m_VtxDesc.Position & MASK_INDEXED)
XOR(32, R(skipped_reg), R(skipped_reg));
// TODO: load constants into registers outside the main loop
const u8* loop_start = GetCodePtr();
if (m_VtxDesc.PosMatIdx)
{
MOVZX(32, 8, scratch1, MDisp(src_reg, m_src_ofs));
AND(32, R(scratch1), Imm8(0x3F));
MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1));
m_native_components |= VB_HAS_POSMTXIDX;
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = m_dst_ofs;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
m_src_ofs += sizeof(u8);
m_dst_ofs += sizeof(u32);
}
u32 texmatidx_ofs[8];
const u64 tm[8] = {
m_VtxDesc.Tex0MatIdx, m_VtxDesc.Tex1MatIdx, m_VtxDesc.Tex2MatIdx, m_VtxDesc.Tex3MatIdx,
m_VtxDesc.Tex4MatIdx, m_VtxDesc.Tex5MatIdx, m_VtxDesc.Tex6MatIdx, m_VtxDesc.Tex7MatIdx,
};
for (int i = 0; i < 8; i++)
{
if (tm[i])
texmatidx_ofs[i] = m_src_ofs++;
}
OpArg data = GetVertexAddr(ARRAY_POSITION, m_VtxDesc.Position);
ReadVertex(data, m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements + 2, 3, m_VtxAttr.PosFrac, &m_native_vtx_decl.position);
if (m_VtxDesc.Normal)
{
static const u8 map[] = {7, 6, 15, 14, 30};
u8 scaling_exponent = map[m_VtxAttr.NormalFormat];
for (int i = 0; i < (m_VtxAttr.NormalElements ? 3 : 1); i++)
{
if (!i || m_VtxAttr.NormalIndex3)
{
data = GetVertexAddr(ARRAY_NORMAL, m_VtxDesc.Normal);
int elem_size = 1 << (m_VtxAttr.NormalFormat / 2);
data.offset += i * elem_size * 3;
}
data.offset += ReadVertex(data, m_VtxDesc.Normal, m_VtxAttr.NormalFormat, 3, 3, scaling_exponent, &m_native_vtx_decl.normals[i]);
}
m_native_components |= VB_HAS_NRM0;
if (m_VtxAttr.NormalElements)
m_native_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
const u64 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++)
{
if (col[i])
{
data = GetVertexAddr(ARRAY_COLOR + i, col[i]);
ReadColor(data, col[i], m_VtxAttr.color[i].Comp, m_VtxAttr.color[i].Elements);
m_native_components |= VB_HAS_COL0 << i;
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].enable = true;
m_native_vtx_decl.colors[i].offset = m_dst_ofs;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
m_dst_ofs += 4;
}
}
const u64 tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
for (int i = 0; i < 8; i++)
{
int elements = m_VtxAttr.texCoord[i].Elements + 1;
if (tc[i])
{
data = GetVertexAddr(ARRAY_TEXCOORD0 + i, tc[i]);
u8 scaling_exponent = m_VtxAttr.texCoord[i].Frac;
ReadVertex(data, tc[i], m_VtxAttr.texCoord[i].Format, elements, tm[i] ? 2 : elements, scaling_exponent, &m_native_vtx_decl.texcoords[i]);
m_native_components |= VB_HAS_UV0 << i;
}
if (tm[i])
{
m_native_components |= VB_HAS_TEXMTXIDX0 << i;
m_native_vtx_decl.texcoords[i].components = 3;
m_native_vtx_decl.texcoords[i].enable = true;
m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
m_native_vtx_decl.texcoords[i].integer = false;
MOVZX(64, 8, scratch1, MDisp(src_reg, texmatidx_ofs[i]));
PXOR(XMM0, R(XMM0));
CVTSI2SS(XMM0, R(scratch1));
if (tc[i])
{
CVTSI2SS(XMM0, R(scratch1));
MOVSS(MDisp(dst_reg, m_dst_ofs), XMM0);
m_dst_ofs += sizeof(float);
}
else
{
m_native_vtx_decl.texcoords[i].offset = m_dst_ofs;
PXOR(XMM0, R(XMM0));
CVTSI2SS(XMM0, R(scratch1));
SHUFPS(XMM0, R(XMM0), 0x45);
MOVUPS(MDisp(dst_reg, m_dst_ofs), XMM0);
m_dst_ofs += sizeof(float) * 3;
}
}
}
// Prepare for the next vertex.
ADD(64, R(dst_reg), Imm32(m_dst_ofs));
const u8* cont = GetCodePtr();
ADD(64, R(src_reg), Imm32(m_src_ofs));
SUB(32, R(count_reg), Imm8(1));
J_CC(CC_NZ, loop_start);
// Get the original count.
POP(32, R(ABI_RETURN));
if (m_VtxDesc.Position & MASK_INDEXED)
{
SUB(32, R(ABI_RETURN), R(skipped_reg));
RET();
SetJumpTarget(m_skip_vertex);
ADD(32, R(skipped_reg), Imm8(m_VtxDesc.Position == INDEX8 ? 1 : 2));
JMP(cont);
}
else
{
RET();
}
m_VertexSize = m_src_ofs;
m_native_vtx_decl.stride = m_dst_ofs;
}
bool VertexLoaderX64::IsInitialized()
{
return true;
}
int VertexLoaderX64::RunVertices(int primitive, int count, DataReader src, DataReader dst)
{
m_numLoadedVertices += count;
return ((int (*)(u8* src, u8* dst, int count))region)(src.GetPointer(), dst.GetPointer(), count);
}

View File

@ -0,0 +1,22 @@
#include "Common/x64Emitter.h"
#include "VideoCommon/VertexLoaderBase.h"
class VertexLoaderX64 : public VertexLoaderBase, public Gen::X64CodeBlock
{
public:
VertexLoaderX64(const TVtxDesc& vtx_desc, const VAT& vtx_att);
protected:
std::string GetName() const override { return "VertexLoaderJit"; }
bool IsInitialized() override;
int RunVertices(int primitive, int count, DataReader src, DataReader dst) override;
private:
u32 m_src_ofs = 0;
u32 m_dst_ofs = 0;
Gen::FixupBranch m_skip_vertex;
Gen::OpArg GetVertexAddr(int array, u64 attribute);
int ReadVertex(Gen::OpArg data, u64 attribute, int format, int count_in, int count_out, u8 scaling_exponent, AttributeFormat* native_format);
void ReadColor(Gen::OpArg data, u64 attribute, int format, int elements);
void GenerateVertexLoader();
};

View File

@ -66,6 +66,7 @@
<ClCompile Include="TextureConversionShader.cpp" />
<ClCompile Include="VertexLoader.cpp" />
<ClCompile Include="VertexLoaderBase.cpp" />
<ClCompile Include="VertexLoaderX64.cpp" />
<ClCompile Include="VertexLoaderManager.cpp" />
<ClCompile Include="VertexLoader_Color.cpp" />
<ClCompile Include="VertexLoader_Normal.cpp" />

View File

@ -122,6 +122,9 @@
<ClCompile Include="VertexLoaderBase.cpp">
<Filter>Vertex Loading</Filter>
</ClCompile>
<ClCompile Include="VertexLoaderX64.cpp">
<Filter>Vertex Loading</Filter>
</ClCompile>
<ClCompile Include="VertexLoader_Color.cpp">
<Filter>Vertex Loading</Filter>
</ClCompile>