Now block link nearcode is back to a length of three instructions.
Unfortunately, the code I'm adding to Jit.cpp ends up being a bit messy
because we need to handle the case of already being in farcode...
Jumping between linked blocks currently works as follows: First, at the
end of the first block, we check if the downcount is greater than zero.
If it is, we jump to the `normalEntry` of the block. So far so good. But
if the downcount wasn't greater than zero, we jump to the `checkedEntry`
of the block, which checks the downcount *again* and then jumps to
`do_timing` if it's less than zero (which seems like an off by one error
- Jit64 doesn't do anything like this). This second check is rather
redundant. Let's jump to `do_timing` where we previously jumped to
`checkedEntry`.
Jit64 doesn't check the downcount on block entry. See 5236dc3.
I initially thought the 0x01 side was both sides (equavalent to just C. However, this turned out to be something I forgot I implemented in my personal interface. 0x01 does not seem to change any colors.
Recently discovered how exactly the last 2 bytes of the J command for timing data
using portmapping with hosting while using traversal server (which is possible by checking the option while under "direct connect" and flipping back to traversal server) causes dolphin to request a mapping to external port 0.
In UPnP a mapping to external port 0 is actually the wildcard, which means that connection requests on all
external ports (that are not otherwise mapped) will be forwarded to the client.
Additionally it seems like using port mapping with traversal server is probably not expected behavior, as the option checkbox disappears when traversal server is used.
By misusing Config, this netplay-related code opened up a race condition between Config::OnConfigChanged() and SerialInterface::SerialInterfaceManager::UpdateDevices() that could cause iterator invalidation.
Expanded the use of the lock mutex already used for loading the player's existing unlock status to guard against races involving the Achievements dialog window reading from data AchievementManager might be in the process of updating. The lock has been exposed publicly and the AchievementsWindow uses it in its UpdateData method, and anywhere else that might modify data used to render that window has also been wrapped with it.
AchievementManager now has a SetUpdateCallback method for providing a single universal callback for anytime something important changes in the achievement state, such as logging in/out, game load/close, or events such as achievement unlocks. AchievementsWindow sets this callback in its own init to its UpdateData method so that the AchievementsWindow gets updated when one of these changes takes place.
Added some small methods to AchievementManager to expose useful data for displaying in an achievement UI. Also moved a couple things from private to public for the same purpose.
The ExpansionInterfaceManager::PauseAndLock function does nothing but
call other functions that have no effect.
ExpansionInterfaceManager::PauseAndLock calls CEXIChannel::PauseAndLock,
which in turn calls IEXIDevice::PauseAndLock. None of the classes
deriving from IEXIDevice override PauseAndLock, and the implementation
in IEXIDevice does nothing.
Fixing all the places it's used turned out to be a more complicated task than anticipated. So let's remove this for now so we don't confuse users with cryptic error messages...
To further increase the accuracy of the post process phase, I've added (scRGB) HDR support, which is necessary
to fully display the PAL and NTSC-J color spaces, and also to improve the quality of post process texture samplings and
do them in linear space instead of gamma space (which is very important when playing at low resolutions).
For SDR, the quality is also slightly increased, at least if any post process runs, as the buffer is now
R10G10B10A2 (on Vulkan, DX11 and DX12) if supported; previously it was R8G8B8A8 but the alpha bits were wasted.
Gamma correction is arguably the most important thing as Dolphin on Windows outputted in "sRGB" (implicitly)
as that's what Windows expects by default, though sRGB gamma is very different from the gamma commonly used
by video standards dating to the pre HDR era (roughly gamma 2.35).
Additionally, the addition of HDR support (which is pretty straight forward and minimal), added support for
our own custom AutoHDR shaders, which would allow us to achieve decent looking HDR in Dolphin games without
having to use SpecialK or Windows 11 AutoHDR. Both of which don't necessarily play nice with older games
with strongly different and simpler lighting. HDR should also be supported in Linux.
Development of my own AutoHDR shader is almost complete and will come next.
This has been carefully tested and there should be no regression in any of the different features that Dolphin
offers, like multisampling, stereo rendering, other post processes, etc etc.
Fixes: https://bugs.dolphin-emu.org/issues/8941
Co-authored-by: EndlesslyFlowering <EndlesslyFlowering@protonmail.com>
Co-authored-by: Dogway <lin_ares@hotmail.com>