Two of these arrays were stored within the save state when the exact
same data is constructed all the time.
We can just build this into the binary rather than the save state,
shrinking a little bit of the save state's overall size.
This wasn't changed when halfline counts were changed to 0-based. Also
included is a diagram showing an understanding of how the values in the VI
timing registers maps to the video signal.
This is the large change in the branch.
This lets us use either the host filesystem or (in the future) a NAND
image exactly the same way, and make sure the IPC emulation code
behaves identically. Less duplicated code.
Note that "FileIO" and "FS" were merged, because it actually doesn't
make a lot of sense to split them: IOS handles requests for both
/dev/fs and files in the same resource manager, and as it turns out,
/dev/fs commands can *also* be sent to non /dev/fs file descriptors!
If we kept /dev/fs and files split, there would be no way to
emulate that correctly. I'm not aware of anything that does that (yet?)
but I think it's important to be correct.
This is only ever memset to zero and never used again.
This also gets rid of an instance of undefined behavior considering the
draft standard for C++17 (N4659) states at [dcl.type.cv] paragraph 5:
"
The semantics of an access through a volatile glvalue are implementation-defined.
If an attempt is made to access an object defined with a volatile-qualified type
through the use of a non-volatile glvalue, the behavior is undefined.
"
The main problem was that the volume of the mixer wasn't savestated.
The volume is typically 0 at the beginning of a game, so loading a
savestate at the beginning of a game would lead to silent DTK audio.
I also added savestating to StreamADPCM.cpp.
When an ACCOV is triggered, the accelerator stops reading back anything
and updating the current address until the YN2 register is set.
This is kept track of internally by the DSP; this state is not exposed
via any register.
However, we need to emulate this behaviour correctly because some
ucodes rely on it (notably AX GC); failure to emulate it will result
in reading past the end and start address for non-looped voices.
Ideally Common.h wouldn't be a header in the Common library, and instead be renamed to something else, like PlatformCompatibility.h or something, but even then, there's still some things in the header that don't really fall under that label
This moves the version strings out to their own version header that doesn't dump a bunch of other unrelated things into scope, like what Common.h was doing.
This also places them into the Common namespace, as opposed to letting them sit in the global namespace.
Core::PauseAndLock requires all calls to it to be balanced, like this:
const bool was_unpaused = Core::PauseAndLock(true);
// do stuff on the CPU thread
Core::PauseAndLock(false, was_unpaused);
Aside from being a bit cumbersome, it turns out all callers really
don't need to know about was_unpaused at all. They just need to do
something on the CPU thread safely, including locking/unlocking.
So this commit replaces Core::PauseAndLock with a function that
makes both the purpose and the scope of what is being run on the
CPU thread visually clear. This makes it harder to accidentally run
something on the wrong thread, or forget the second call to
PauseAndLock to unpause, or forget that it needs to be passed
was_unpaused at the end.
We also don't need comments to indicate code X is being run on the
CPU thread anymore, as the function name makes it obvious.
This commit merges the import and export contexts into a single context
because this is what IOS does, which means we can only reproduce its
behaviour correctly if we use a single context for both operations.
The other reason is that having two separate and very similar structs
is not really a good idea.
While working on this commit, I was notified that our handling of
ImportTmd/ExportTitleInit is not correct. In particular, we always use
the title key for both importing and exporting, which is wrong. To make
this easier to fix in a follow-up PR, the context now also has a title
key field, just like ES. This also lets us avoid computing it every
single time in ImportContentDone.
This is larger than I thought I would be, but unfortunately it's quite
hard to split fixes like this when the handling is wrong in tons of
different places.
The content table is limited in size. It can only hold 16 entries.
Three consequences:
* Since the table cannot grow indefinitely, instead of using a std::map
we use a std::array as we should.
* Remove a hack where the CFD was cleared back to 0 on IPC close (wtf?)
* The CFD now doesn't keep increasing to infinity. It's unknown if this
would fix anything at all, but some issues in the past were caused
by CFDs being excessively large.
Other minor changes:
* Simplify save state logic.
* Keep track of the UID like ES does. Not sure how useful this is, but
we can do this very easily so why not.
* Remove the guesswork and use the actual error codes.
* Add more error checking to make Dolphin less likely to crash.
Something that should be done in the future: deduplicate the filesystem
logic. Something that takes one line in the actual ES code takes
10+ lines in our implementation... while duplicating the FS logic...
This will likely harder to fix though, so I'm leaving that
for another time.
I didn't know better back then, but the boot type is only supposed to
be used for the actual boot params. It shouldn't be used or changed
after booting.
By removing mutable state in VolumeWiiCrypted, this change makes
partition-related code simpler. It also gets rid of other ugly things,
like ISOProperties's "over 9000" loop that creates a list of
partitions by trying possible combinations, and DiscScrubber's
volume swapping that recreates the entire volume when it needs to
change partition.
For thread safety reasons, the currently inserted volume must
only be accessed by the DVD thread (or by the CPU thread if it
calls DVDThread::WaitUntilIdle() first). After this commit,
only DVDThread.cpp can access the volume, which prevents code in
other files from accessing the volume in a non-threadsafe way.