With 7aa305ea35 merged, all that remains
within Profiler.cpp is an unused function that just forwards to the
equivalent function within JitInterface. Given that, we can just remove
the source file.
This adds the functionality of sending the host's save data (raw memory
cards, as well as GCI files and Wii saves with a matching GameID) to
all other clients. The data is compressed using LZO1X to greatly reduce
its size while keeping compression/decompression fast. Save
synchronization is enabled by default, and toggleable with a checkbox
in the NetPlay dialog.
On clicking start, if the option is enabled, game boot will be delayed
until all players have received the save data sent by the host. If any
player fails to receive it properly, boot will be cancelled to prevent
desyncs.
This adds a base class that is used to replace the concrete instance of
the x64 JIT pointer within DSPCore. This fully removes the direct use
(read: non-ifdefed) usage of x86-64-specifics within the main DSP code.
Said base can also be used for creating JITs for other architectures,
such as AArch64, etc.
This is one of the last things that needed to be done in order to
finally separate the x86-64-specific code from the rest of the common
DSP code. This splits the tables up similar to how it's currently done
for the PowerPC CPU tables.
Now, the tables are split up and within their own relevant source files,
so the main table within the common DSP code acts as the "info" table
that provides specifics about a particular instruction, while the other
tables contain the actual instruction.
With this out of the way, all that's left is to make a general base for
the emitters and we can then replace the x64 JIT pointer in DSPCore with
it, getting all x64 out of the common code once and for all.
While shuffling all the code around, the removal of the DSPEmitter
includes in some places uncovered indirect inclusions, so this also
fixes those as well.
Keeps all of the interpreter-specific exception handling functions
together in a reusable way across translation units, similar to
FPUtils.h for reusable floating-point functions.
PowerPC.h at this point is pretty much a general glob of stuff, and it's
unfortunate, since it means pulling in a lot of unrelated header
dependencies and a bunch of other things that don't need to be seen by
things that just want to read memory.
Breaking this out into its own header keeps all the MMU-related stuff
together and also limits the amount of header dependencies being
included (the primary motivation for this being the former reason).
It's not common code that could be reused for, say, Citra;
it's absolutely specific to Wii emulation and only used by the Dolphin
core, so let's move it there.
Another reason for doing this is to avoid having Common depend on Core.
This is the large change in the branch.
This lets us use either the host filesystem or (in the future) a NAND
image exactly the same way, and make sure the IPC emulation code
behaves identically. Less duplicated code.
Note that "FileIO" and "FS" were merged, because it actually doesn't
make a lot of sense to split them: IOS handles requests for both
/dev/fs and files in the same resource manager, and as it turns out,
/dev/fs commands can *also* be sent to non /dev/fs file descriptors!
If we kept /dev/fs and files split, there would be no way to
emulate that correctly. I'm not aware of anything that does that (yet?)
but I think it's important to be correct.
Now that we have a proper filesystem interface, it makes more sense
to return it instead of the emulated IOS device (which isn't
really usable for any purpose other than emulated IPC).
Extract the existing FS code into a HostBackend implementing
the filesystem interface.
Compared to the original code, this uses less static state.
The open host files map is now a member variable
as it should have been. Filesystem handles are now also easier
to savestate. Some variable names and log messages were cleaned up.
Nothing else has been changed.
Add a new FileSystem class that can be used to perform operations
on the emulated Wii filesystem.
This will allow separating the IPC code (reading from and writing to
memory to handle IOS FS commands) and the actual filesystem code
in a much better way.
This also paves the way for implementing another filesystem backend
in the future -- NAND images for more complete emulation, including
filesystem metadata like permissions or file orders, which some games
and homebrew actually care about -- without needing to make any more
changes to the other parts of the codebase, in addition to making
filesystem behaviour tests easier to write.
While the code is namespaced out properly, the files weren't separated
into their own directory. This moves the files so that introducing a general
interface is easier in the future for supporting other architectures.
Not really used anywhere yet, but useful for not having to duplicate
config locations and for getting rid of conflicts when I get around
to rebase my Main.Core and Main.DSP porting PR.
Settings that come from the SYSCONF are now included in Dolphin's
config system as part of the base layer. They are handled in a
special way compared to other settings to make sure they are only
loaded from and saved to the SYSCONF (to avoid different, possibly
contradicting sources of truth).
Allows reusing the WAD import logic more easily, whereas UICommon
code can only be used from UICommon and UI.
And managing what's on the NAND is the Core's responsability, not UI.
In the future, NAND filesystem access will be limited to one IOS
instance, for safety reasons and to make it possible to consider
supporting NAND images. This means that any code accessing the NAND
filesystem must go through the FS device, both for code that is
external to IOS and internal.
Because we don't want to introduce any singleton, this requires
internal IOS code that needs NAND access to be part of an IOS device
class, so they can access the FS device easily.
Making some of the internal ES implementation functions member
functions also prevents them from being (mis)used outside of IOS,
since they cannot be called everywhere anymore.
They're essentially the same. To achieve this, this commit unifies
DolReader and ElfReader into a common interface for boot executable
readers, so the only remaining difference between ELF and DOL is
how which volume is inserted.