Use a constexpr-friendly cosine implementation (#1903)

This commit is contained in:
Jesse Talavera 2023-12-05 06:41:28 -05:00 committed by GitHub
parent 2e8cca9ca1
commit ae91d89f7c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -65,16 +65,56 @@ const s16 SPUChannel::PSGTable[8][8] =
{-0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF, -0x7FFF}
};
template <typename T>
constexpr T ipow(T num, unsigned int pow)
{
T product = 1;
for (int i = 0; i < pow; ++i)
{
product *= num;
}
return product;
}
template <typename T>
constexpr T factorial(T num)
{
T product = 1;
for (T i = 1; i <= num; ++i)
{
product *= i;
}
return product;
}
// We can't use std::cos in constexpr functions until C++26,
// so we need to compute the cosine ourselves with the Taylor series.
// Code adapted from https://prosepoetrycode.potterpcs.net/2015/07/a-simple-constexpr-power-function-c/
template <int Iterations = 10>
constexpr double cosine (double theta)
{
return (ipow(-1, Iterations) * ipow(theta, 2 * Iterations)) /
static_cast<double>(factorial(2ull * Iterations))
+ cosine<Iterations-1>(theta);
}
template <>
constexpr double cosine<0> (double theta)
{
return 1.0;
}
// generate interpolation tables
// values are 1:1:14 fixed-point
constexpr std::array<s16, 0x100> InterpCos = []() constexpr {
std::array<s16, 0x100> interp {};
float m_pi = std::acos(-1.0f);
for (int i = 0; i < 0x100; i++)
{
float ratio = (i * m_pi) / 255.0f;
ratio = 1.0f - std::cos(ratio);
float ratio = (i * M_PI) / 255.0f;
ratio = 1.0f - cosine(ratio);
interp[i] = (s16)(ratio * 0x2000);
}