melonDS/src/GPU2D_Soft.cpp

2261 lines
62 KiB
C++

/*
Copyright 2016-2021 Arisotura
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#include "GPU2D_Soft.h"
#include "GPU.h"
namespace GPU2D
{
SoftRenderer::SoftRenderer()
: Renderer2D()
{
// initialize mosaic table
for (int m = 0; m < 16; m++)
{
for (int x = 0; x < 256; x++)
{
int offset = x % (m+1);
MosaicTable[m][x] = offset;
}
}
}
u32 SoftRenderer::ColorBlend4(u32 val1, u32 val2, u32 eva, u32 evb)
{
u32 r = (((val1 & 0x00003F) * eva) + ((val2 & 0x00003F) * evb)) >> 4;
u32 g = ((((val1 & 0x003F00) * eva) + ((val2 & 0x003F00) * evb)) >> 4) & 0x007F00;
u32 b = ((((val1 & 0x3F0000) * eva) + ((val2 & 0x3F0000) * evb)) >> 4) & 0x7F0000;
if (r > 0x00003F) r = 0x00003F;
if (g > 0x003F00) g = 0x003F00;
if (b > 0x3F0000) b = 0x3F0000;
return r | g | b | 0xFF000000;
}
u32 SoftRenderer::ColorBlend5(u32 val1, u32 val2)
{
u32 eva = ((val1 >> 24) & 0x1F) + 1;
u32 evb = 32 - eva;
if (eva == 32) return val1;
u32 r = (((val1 & 0x00003F) * eva) + ((val2 & 0x00003F) * evb)) >> 5;
u32 g = ((((val1 & 0x003F00) * eva) + ((val2 & 0x003F00) * evb)) >> 5) & 0x007F00;
u32 b = ((((val1 & 0x3F0000) * eva) + ((val2 & 0x3F0000) * evb)) >> 5) & 0x7F0000;
if (eva <= 16)
{
r += 0x000001;
g += 0x000100;
b += 0x010000;
}
if (r > 0x00003F) r = 0x00003F;
if (g > 0x003F00) g = 0x003F00;
if (b > 0x3F0000) b = 0x3F0000;
return r | g | b | 0xFF000000;
}
u32 SoftRenderer::ColorBrightnessUp(u32 val, u32 factor)
{
u32 rb = val & 0x3F003F;
u32 g = val & 0x003F00;
rb += ((((0x3F003F - rb) * factor) >> 4) & 0x3F003F);
g += ((((0x003F00 - g) * factor) >> 4) & 0x003F00);
return rb | g | 0xFF000000;
}
u32 SoftRenderer::ColorBrightnessDown(u32 val, u32 factor)
{
u32 rb = val & 0x3F003F;
u32 g = val & 0x003F00;
rb -= (((rb * factor) >> 4) & 0x3F003F);
g -= (((g * factor) >> 4) & 0x003F00);
return rb | g | 0xFF000000;
}
u32 SoftRenderer::ColorComposite(int i, u32 val1, u32 val2)
{
u32 coloreffect = 0;
u32 eva, evb;
u32 flag1 = val1 >> 24;
u32 flag2 = val2 >> 24;
u32 blendCnt = CurUnit->BlendCnt;
u32 target2;
if (flag2 & 0x80) target2 = 0x1000;
else if (flag2 & 0x40) target2 = 0x0100;
else target2 = flag2 << 8;
if ((flag1 & 0x80) && (blendCnt & target2))
{
// sprite blending
coloreffect = 1;
if (flag1 & 0x40)
{
eva = flag1 & 0x1F;
evb = 16 - eva;
}
else
{
eva = CurUnit->EVA;
evb = CurUnit->EVB;
}
}
else if ((flag1 & 0x40) && (blendCnt & target2))
{
// 3D layer blending
coloreffect = 4;
}
else
{
if (flag1 & 0x80) flag1 = 0x10;
else if (flag1 & 0x40) flag1 = 0x01;
if ((blendCnt & flag1) && (WindowMask[i] & 0x20))
{
coloreffect = (blendCnt >> 6) & 0x3;
if (coloreffect == 1)
{
if (blendCnt & target2)
{
eva = CurUnit->EVA;
evb = CurUnit->EVB;
}
else
coloreffect = 0;
}
}
}
switch (coloreffect)
{
case 0: return val1;
case 1: return ColorBlend4(val1, val2, eva, evb);
case 2: return ColorBrightnessUp(val1, CurUnit->EVY);
case 3: return ColorBrightnessDown(val1, CurUnit->EVY);
case 4: return ColorBlend5(val1, val2);
}
return val1;
}
void SoftRenderer::DrawScanline(u32 line, Unit* unit)
{
CurUnit = unit;
int stride = GPU3D::CurrentRenderer->Accelerated ? (256*3 + 1) : 256;
u32* dst = &Framebuffer[CurUnit->Num][stride * line];
int n3dline = line;
line = GPU::VCount;
if (CurUnit->Num == 0)
{
auto bgDirty = GPU::VRAMDirty_ABG.DeriveState(GPU::VRAMMap_ABG);
GPU::MakeVRAMFlat_ABGCoherent(bgDirty);
auto bgExtPalDirty = GPU::VRAMDirty_ABGExtPal.DeriveState(GPU::VRAMMap_ABGExtPal);
GPU::MakeVRAMFlat_ABGExtPalCoherent(bgExtPalDirty);
auto objExtPalDirty = GPU::VRAMDirty_AOBJExtPal.DeriveState(&GPU::VRAMMap_AOBJExtPal);
GPU::MakeVRAMFlat_AOBJExtPalCoherent(objExtPalDirty);
}
else
{
auto bgDirty = GPU::VRAMDirty_BBG.DeriveState(GPU::VRAMMap_BBG);
GPU::MakeVRAMFlat_BBGCoherent(bgDirty);
auto bgExtPalDirty = GPU::VRAMDirty_BBGExtPal.DeriveState(GPU::VRAMMap_BBGExtPal);
GPU::MakeVRAMFlat_BBGExtPalCoherent(bgExtPalDirty);
auto objExtPalDirty = GPU::VRAMDirty_BOBJExtPal.DeriveState(&GPU::VRAMMap_BOBJExtPal);
GPU::MakeVRAMFlat_BOBJExtPalCoherent(objExtPalDirty);
}
bool forceblank = false;
// scanlines that end up outside of the GPU drawing range
// (as a result of writing to VCount) are filled white
if (line > 192) forceblank = true;
// GPU B can be completely disabled by POWCNT1
// oddly that's not the case for GPU A
if (CurUnit->Num && !CurUnit->Enabled) forceblank = true;
if (line == 0 && CurUnit->CaptureCnt & (1 << 31) && !forceblank)
CurUnit->CaptureLatch = true;
if (CurUnit->Num == 0)
{
if (!GPU3D::CurrentRenderer->Accelerated)
_3DLine = GPU3D::GetLine(n3dline);
else if (CurUnit->CaptureLatch && (((CurUnit->CaptureCnt >> 29) & 0x3) != 1))
{
_3DLine = GPU3D::GetLine(n3dline);
//GPU3D::GLRenderer::PrepareCaptureFrame();
}
}
if (forceblank)
{
for (int i = 0; i < 256; i++)
dst[i] = 0xFFFFFFFF;
if (GPU3D::CurrentRenderer->Accelerated)
{
dst[256*3] = 0;
}
return;
}
u32 dispmode = CurUnit->DispCnt >> 16;
dispmode &= (CurUnit->Num ? 0x1 : 0x3);
// always render regular graphics
DrawScanline_BGOBJ(line);
CurUnit->UpdateMosaicCounters(line);
switch (dispmode)
{
case 0: // screen off
{
for (int i = 0; i < 256; i++)
dst[i] = 0x003F3F3F;
}
break;
case 1: // regular display
{
int i = 0;
for (; i < (stride & ~1); i+=2)
*(u64*)&dst[i] = *(u64*)&BGOBJLine[i];
}
break;
case 2: // VRAM display
{
u32 vrambank = (CurUnit->DispCnt >> 18) & 0x3;
if (GPU::VRAMMap_LCDC & (1<<vrambank))
{
u16* vram = (u16*)GPU::VRAM[vrambank];
vram = &vram[line * 256];
for (int i = 0; i < 256; i++)
{
u16 color = vram[i];
u8 r = (color & 0x001F) << 1;
u8 g = (color & 0x03E0) >> 4;
u8 b = (color & 0x7C00) >> 9;
dst[i] = r | (g << 8) | (b << 16);
}
}
else
{
for (int i = 0; i < 256; i++)
{
dst[i] = 0;
}
}
}
break;
case 3: // FIFO display
{
for (int i = 0; i < 256; i++)
{
u16 color = CurUnit->DispFIFOBuffer[i];
u8 r = (color & 0x001F) << 1;
u8 g = (color & 0x03E0) >> 4;
u8 b = (color & 0x7C00) >> 9;
dst[i] = r | (g << 8) | (b << 16);
}
}
break;
}
// capture
if ((CurUnit->Num == 0) && CurUnit->CaptureLatch)
{
u32 capwidth, capheight;
switch ((CurUnit->CaptureCnt >> 20) & 0x3)
{
case 0: capwidth = 128; capheight = 128; break;
case 1: capwidth = 256; capheight = 64; break;
case 2: capwidth = 256; capheight = 128; break;
case 3: capwidth = 256; capheight = 192; break;
}
if (line < capheight)
DoCapture(line, capwidth);
}
u32 masterBrightness = CurUnit->MasterBrightness;
if (GPU3D::CurrentRenderer->Accelerated)
{
dst[256*3] = masterBrightness | (CurUnit->DispCnt & 0x30000);
return;
}
// master brightness
if (dispmode != 0)
{
if ((masterBrightness >> 14) == 1)
{
// up
u32 factor = masterBrightness & 0x1F;
if (factor > 16) factor = 16;
for (int i = 0; i < 256; i++)
{
dst[i] = ColorBrightnessUp(dst[i], factor);
}
}
else if ((masterBrightness >> 14) == 2)
{
// down
u32 factor = masterBrightness & 0x1F;
if (factor > 16) factor = 16;
for (int i = 0; i < 256; i++)
{
dst[i] = ColorBrightnessDown(dst[i], factor);
}
}
}
// convert to 32-bit BGRA
// note: 32-bit RGBA would be more straightforward, but
// BGRA seems to be more compatible (Direct2D soft, cairo...)
for (int i = 0; i < 256; i+=2)
{
u64 c = *(u64*)&dst[i];
u64 r = (c << 18) & 0xFC000000FC0000;
u64 g = (c << 2) & 0xFC000000FC00;
u64 b = (c >> 14) & 0xFC000000FC;
c = r | g | b;
*(u64*)&dst[i] = c | ((c & 0x00C0C0C000C0C0C0) >> 6) | 0xFF000000FF000000;
}
}
void SoftRenderer::VBlankEnd(Unit* unitA, Unit* unitB)
{
#ifdef OGLRENDERER_ENABLED
if (GPU3D::CurrentRenderer->Accelerated)
{
if ((unitA->CaptureCnt & (1<<31)) && (((unitA->CaptureCnt >> 29) & 0x3) != 1))
{
reinterpret_cast<GPU3D::GLRenderer*>(GPU3D::CurrentRenderer.get())->PrepareCaptureFrame();
}
}
#endif
}
void SoftRenderer::DoCapture(u32 line, u32 width)
{
u32 captureCnt = CurUnit->CaptureCnt;
u32 dstvram = (captureCnt >> 16) & 0x3;
// TODO: confirm this
// it should work like VRAM display mode, which requires VRAM to be mapped to LCDC
if (!(GPU::VRAMMap_LCDC & (1<<dstvram)))
return;
u16* dst = (u16*)GPU::VRAM[dstvram];
u32 dstaddr = (((captureCnt >> 18) & 0x3) << 14) + (line * width);
// TODO: handle 3D in GPU3D::CurrentRenderer->Accelerated mode!!
u32* srcA;
if (captureCnt & (1<<24))
{
srcA = _3DLine;
}
else
{
srcA = BGOBJLine;
if (GPU3D::CurrentRenderer->Accelerated)
{
// in GPU3D::CurrentRenderer->Accelerated mode, compositing is normally done on the GPU
// but when doing display capture, we do need the composited output
// so we do it here
for (int i = 0; i < 256; i++)
{
u32 val1 = BGOBJLine[i];
u32 val2 = BGOBJLine[256+i];
u32 val3 = BGOBJLine[512+i];
u32 compmode = (val3 >> 24) & 0xF;
if (compmode == 4)
{
// 3D on top, blending
u32 _3dval = _3DLine[i];
if ((_3dval >> 24) > 0)
val1 = ColorBlend5(_3dval, val1);
else
val1 = val2;
}
else if (compmode == 1)
{
// 3D on bottom, blending
u32 _3dval = _3DLine[i];
if ((_3dval >> 24) > 0)
{
u32 eva = (val3 >> 8) & 0x1F;
u32 evb = (val3 >> 16) & 0x1F;
val1 = ColorBlend4(val1, _3dval, eva, evb);
}
else
val1 = val2;
}
else if (compmode <= 3)
{
// 3D on top, normal/fade
u32 _3dval = _3DLine[i];
if ((_3dval >> 24) > 0)
{
u32 evy = (val3 >> 8) & 0x1F;
val1 = _3dval;
if (compmode == 2) val1 = ColorBrightnessUp(val1, evy);
else if (compmode == 3) val1 = ColorBrightnessDown(val1, evy);
}
else
val1 = val2;
}
BGOBJLine[i] = val1;
}
}
}
u16* srcB = NULL;
u32 srcBaddr = line * 256;
if (captureCnt & (1<<25))
{
srcB = &CurUnit->DispFIFOBuffer[0];
srcBaddr = 0;
}
else
{
u32 srcvram = (CurUnit->DispCnt >> 18) & 0x3;
if (GPU::VRAMMap_LCDC & (1<<srcvram))
srcB = (u16*)GPU::VRAM[srcvram];
if (((CurUnit->DispCnt >> 16) & 0x3) != 2)
srcBaddr += ((captureCnt >> 26) & 0x3) << 14;
}
dstaddr &= 0xFFFF;
srcBaddr &= 0xFFFF;
static_assert(GPU::VRAMDirtyGranularity == 512, "");
GPU::VRAMDirty[dstvram][(dstaddr * 2) / GPU::VRAMDirtyGranularity] = true;
switch ((captureCnt >> 29) & 0x3)
{
case 0: // source A
{
for (u32 i = 0; i < width; i++)
{
u32 val = srcA[i];
// TODO: check what happens when alpha=0
u32 r = (val >> 1) & 0x1F;
u32 g = (val >> 9) & 0x1F;
u32 b = (val >> 17) & 0x1F;
u32 a = ((val >> 24) != 0) ? 0x8000 : 0;
dst[dstaddr] = r | (g << 5) | (b << 10) | a;
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
break;
case 1: // source B
{
if (srcB)
{
for (u32 i = 0; i < width; i++)
{
dst[dstaddr] = srcB[srcBaddr];
srcBaddr = (srcBaddr + 1) & 0xFFFF;
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
else
{
for (u32 i = 0; i < width; i++)
{
dst[dstaddr] = 0;
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
}
break;
case 2: // sources A+B
case 3:
{
u32 eva = captureCnt & 0x1F;
u32 evb = (captureCnt >> 8) & 0x1F;
// checkme
if (eva > 16) eva = 16;
if (evb > 16) evb = 16;
if (srcB)
{
for (u32 i = 0; i < width; i++)
{
u32 val = srcA[i];
// TODO: check what happens when alpha=0
u32 rA = (val >> 1) & 0x1F;
u32 gA = (val >> 9) & 0x1F;
u32 bA = (val >> 17) & 0x1F;
u32 aA = ((val >> 24) != 0) ? 1 : 0;
val = srcB[srcBaddr];
u32 rB = val & 0x1F;
u32 gB = (val >> 5) & 0x1F;
u32 bB = (val >> 10) & 0x1F;
u32 aB = val >> 15;
u32 rD = ((rA * aA * eva) + (rB * aB * evb)) >> 4;
u32 gD = ((gA * aA * eva) + (gB * aB * evb)) >> 4;
u32 bD = ((bA * aA * eva) + (bB * aB * evb)) >> 4;
u32 aD = (eva>0 ? aA : 0) | (evb>0 ? aB : 0);
if (rD > 0x1F) rD = 0x1F;
if (gD > 0x1F) gD = 0x1F;
if (bD > 0x1F) bD = 0x1F;
dst[dstaddr] = rD | (gD << 5) | (bD << 10) | (aD << 15);
srcBaddr = (srcBaddr + 1) & 0xFFFF;
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
else
{
for (u32 i = 0; i < width; i++)
{
u32 val = srcA[i];
// TODO: check what happens when alpha=0
u32 rA = (val >> 1) & 0x1F;
u32 gA = (val >> 9) & 0x1F;
u32 bA = (val >> 17) & 0x1F;
u32 aA = ((val >> 24) != 0) ? 1 : 0;
u32 rD = (rA * aA * eva) >> 4;
u32 gD = (gA * aA * eva) >> 4;
u32 bD = (bA * aA * eva) >> 4;
u32 aD = (eva>0 ? aA : 0);
dst[dstaddr] = rD | (gD << 5) | (bD << 10) | (aD << 15);
dstaddr = (dstaddr + 1) & 0xFFFF;
}
}
}
break;
}
}
#define DoDrawBG(type, line, num) \
do \
{ \
if ((bgCnt[num] & 0x0040) && (CurUnit->BGMosaicSize[0] > 0)) \
{ \
if (GPU3D::CurrentRenderer->Accelerated) DrawBG_##type<true, DrawPixel_Accel>(line, num); \
else DrawBG_##type<true, DrawPixel_Normal>(line, num); \
} \
else \
{ \
if (GPU3D::CurrentRenderer->Accelerated) DrawBG_##type<false, DrawPixel_Accel>(line, num); \
else DrawBG_##type<false, DrawPixel_Normal>(line, num); \
} \
} while (false)
#define DoDrawBG_Large(line) \
do \
{ \
if ((bgCnt[2] & 0x0040) && (CurUnit->BGMosaicSize[0] > 0)) \
{ \
if (GPU3D::CurrentRenderer->Accelerated) DrawBG_Large<true, DrawPixel_Accel>(line); \
else DrawBG_Large<true, DrawPixel_Normal>(line); \
} \
else \
{ \
if (GPU3D::CurrentRenderer->Accelerated) DrawBG_Large<false, DrawPixel_Accel>(line); \
else DrawBG_Large<false, DrawPixel_Normal>(line); \
} \
} while (false)
#define DoInterleaveSprites(prio) \
if (GPU3D::CurrentRenderer->Accelerated) InterleaveSprites<DrawPixel_Accel>(prio); else InterleaveSprites<DrawPixel_Normal>(prio);
template<u32 bgmode>
void SoftRenderer::DrawScanlineBGMode(u32 line)
{
u32 dispCnt = CurUnit->DispCnt;
u16* bgCnt = CurUnit->BGCnt;
for (int i = 3; i >= 0; i--)
{
if ((bgCnt[3] & 0x3) == i)
{
if (dispCnt & 0x0800)
{
if (bgmode >= 3)
DoDrawBG(Extended, line, 3);
else if (bgmode >= 1)
DoDrawBG(Affine, line, 3);
else
DoDrawBG(Text, line, 3);
}
}
if ((bgCnt[2] & 0x3) == i)
{
if (dispCnt & 0x0400)
{
if (bgmode == 5)
DoDrawBG(Extended, line, 2);
else if (bgmode == 4 || bgmode == 2)
DoDrawBG(Affine, line, 2);
else
DoDrawBG(Text, line, 2);
}
}
if ((bgCnt[1] & 0x3) == i)
{
if (dispCnt & 0x0200)
{
DoDrawBG(Text, line, 1);
}
}
if ((bgCnt[0] & 0x3) == i)
{
if (dispCnt & 0x0100)
{
if (!CurUnit->Num && (dispCnt & 0x8))
DrawBG_3D();
else
DoDrawBG(Text, line, 0);
}
}
if ((dispCnt & 0x1000) && NumSprites[CurUnit->Num])
{
DoInterleaveSprites(0x40000 | (i<<16));
}
}
}
void SoftRenderer::DrawScanlineBGMode6(u32 line)
{
u32 dispCnt = CurUnit->DispCnt;
u16* bgCnt = CurUnit->BGCnt;
for (int i = 3; i >= 0; i--)
{
if ((bgCnt[2] & 0x3) == i)
{
if (dispCnt & 0x0400)
{
DoDrawBG_Large(line);
}
}
if ((bgCnt[0] & 0x3) == i)
{
if (dispCnt & 0x0100)
{
if ((!CurUnit->Num) && (dispCnt & 0x8))
DrawBG_3D();
}
}
if ((dispCnt & 0x1000) && NumSprites[CurUnit->Num])
{
DoInterleaveSprites(0x40000 | (i<<16))
}
}
}
void SoftRenderer::DrawScanlineBGMode7(u32 line)
{
u32 dispCnt = CurUnit->DispCnt;
u16* bgCnt = CurUnit->BGCnt;
// mode 7 only has text-mode BG0 and BG1
for (int i = 3; i >= 0; i--)
{
if ((bgCnt[1] & 0x3) == i)
{
if (dispCnt & 0x0200)
{
DoDrawBG(Text, line, 1);
}
}
if ((bgCnt[0] & 0x3) == i)
{
if (dispCnt & 0x0100)
{
if (!CurUnit->Num && (dispCnt & 0x8))
DrawBG_3D();
else
DoDrawBG(Text, line, 0);
}
}
if ((dispCnt & 0x1000) && NumSprites[CurUnit->Num])
{
DoInterleaveSprites(0x40000 | (i<<16))
}
}
}
void SoftRenderer::DrawScanline_BGOBJ(u32 line)
{
// forced blank disables BG/OBJ compositing
if (CurUnit->DispCnt & (1<<7))
{
for (int i = 0; i < 256; i++)
BGOBJLine[i] = 0xFF3F3F3F;
return;
}
u64 backdrop;
if (CurUnit->Num) backdrop = *(u16*)&GPU::Palette[0x400];
else backdrop = *(u16*)&GPU::Palette[0];
{
u8 r = (backdrop & 0x001F) << 1;
u8 g = (backdrop & 0x03E0) >> 4;
u8 b = (backdrop & 0x7C00) >> 9;
backdrop = r | (g << 8) | (b << 16) | 0x20000000;
backdrop |= (backdrop << 32);
for (int i = 0; i < 256; i+=2)
*(u64*)&BGOBJLine[i] = backdrop;
}
if (CurUnit->DispCnt & 0xE000)
CurUnit->CalculateWindowMask(line, WindowMask, OBJWindow[CurUnit->Num]);
else
memset(WindowMask, 0xFF, 256);
ApplySpriteMosaicX();
CurBGXMosaicTable = MosaicTable[CurUnit->BGMosaicSize[0]];
switch (CurUnit->DispCnt & 0x7)
{
case 0: DrawScanlineBGMode<0>(line); break;
case 1: DrawScanlineBGMode<1>(line); break;
case 2: DrawScanlineBGMode<2>(line); break;
case 3: DrawScanlineBGMode<3>(line); break;
case 4: DrawScanlineBGMode<4>(line); break;
case 5: DrawScanlineBGMode<5>(line); break;
case 6: DrawScanlineBGMode6(line); break;
case 7: DrawScanlineBGMode7(line); break;
}
// color special effects
// can likely be optimized
if (!GPU3D::CurrentRenderer->Accelerated)
{
for (int i = 0; i < 256; i++)
{
u32 val1 = BGOBJLine[i];
u32 val2 = BGOBJLine[256+i];
BGOBJLine[i] = ColorComposite(i, val1, val2);
}
}
else
{
if (CurUnit->Num == 0)
{
for (int i = 0; i < 256; i++)
{
u32 val1 = BGOBJLine[i];
u32 val2 = BGOBJLine[256+i];
u32 val3 = BGOBJLine[512+i];
u32 flag1 = val1 >> 24;
u32 flag2 = val2 >> 24;
u32 bldcnteffect = (CurUnit->BlendCnt >> 6) & 0x3;
u32 target1;
if (flag1 & 0x80) target1 = 0x0010;
else if (flag1 & 0x40) target1 = 0x0001;
else target1 = flag1;
u32 target2;
if (flag2 & 0x80) target2 = 0x1000;
else if (flag2 & 0x40) target2 = 0x0100;
else target2 = flag2 << 8;
if (((flag1 & 0xC0) == 0x40) && (CurUnit->BlendCnt & target2))
{
// 3D on top, blending
BGOBJLine[i] = val2;
BGOBJLine[256+i] = ColorComposite(i, val2, val3);
BGOBJLine[512+i] = 0x04000000;
}
else if ((flag1 & 0xC0) == 0x40)
{
// 3D on top, normal/fade
if (bldcnteffect == 1) bldcnteffect = 0;
if (!(CurUnit->BlendCnt & 0x0001)) bldcnteffect = 0;
if (!(WindowMask[i] & 0x20)) bldcnteffect = 0;
BGOBJLine[i] = val2;
BGOBJLine[256+i] = ColorComposite(i, val2, val3);
BGOBJLine[512+i] = (bldcnteffect << 24) | (CurUnit->EVY << 8);
}
else if (((flag2 & 0xC0) == 0x40) && ((CurUnit->BlendCnt & 0x01C0) == 0x0140))
{
// 3D on bottom, blending
u32 eva, evb;
if ((flag1 & 0xC0) == 0xC0)
{
eva = flag1 & 0x1F;
evb = 16 - eva;
}
else if (((CurUnit->BlendCnt & target1) && (WindowMask[i] & 0x20)) ||
((flag1 & 0xC0) == 0x80))
{
eva = CurUnit->EVA;
evb = CurUnit->EVB;
}
else
bldcnteffect = 7;
BGOBJLine[i] = val1;
BGOBJLine[256+i] = ColorComposite(i, val1, val3);
BGOBJLine[512+i] = (bldcnteffect << 24) | (CurUnit->EVB << 16) | (CurUnit->EVA << 8);
}
else
{
// no potential 3D pixel involved
BGOBJLine[i] = ColorComposite(i, val1, val2);
BGOBJLine[256+i] = 0;
BGOBJLine[512+i] = 0x07000000;
}
}
}
else
{
for (int i = 0; i < 256; i++)
{
u32 val1 = BGOBJLine[i];
u32 val2 = BGOBJLine[256+i];
BGOBJLine[i] = ColorComposite(i, val1, val2);
BGOBJLine[256+i] = 0;
BGOBJLine[512+i] = 0x07000000;
}
}
}
if (CurUnit->BGMosaicY >= CurUnit->BGMosaicYMax)
{
CurUnit->BGMosaicY = 0;
CurUnit->BGMosaicYMax = CurUnit->BGMosaicSize[1];
}
else
CurUnit->BGMosaicY++;
/*if (OBJMosaicY >= OBJMosaicYMax)
{
OBJMosaicY = 0;
OBJMosaicYMax = OBJMosaicSize[1];
}
else
OBJMosaicY++;*/
}
void SoftRenderer::DrawPixel_Normal(u32* dst, u16 color, u32 flag)
{
u8 r = (color & 0x001F) << 1;
u8 g = (color & 0x03E0) >> 4;
u8 b = (color & 0x7C00) >> 9;
//g |= ((color & 0x8000) >> 15);
*(dst+256) = *dst;
*dst = r | (g << 8) | (b << 16) | flag;
}
void SoftRenderer::DrawPixel_Accel(u32* dst, u16 color, u32 flag)
{
u8 r = (color & 0x001F) << 1;
u8 g = (color & 0x03E0) >> 4;
u8 b = (color & 0x7C00) >> 9;
*(dst+512) = *(dst+256);
*(dst+256) = *dst;
*dst = r | (g << 8) | (b << 16) | flag;
}
void SoftRenderer::DrawBG_3D()
{
int i = 0;
if (GPU3D::CurrentRenderer->Accelerated)
{
for (i = 0; i < 256; i++)
{
if (!(WindowMask[i] & 0x01)) continue;
BGOBJLine[i+512] = BGOBJLine[i+256];
BGOBJLine[i+256] = BGOBJLine[i];
BGOBJLine[i] = 0x40000000; // 3D-layer placeholder
}
}
else
{
for (i = 0; i < 256; i++)
{
u32 c = _3DLine[i];
if ((c >> 24) == 0) continue;
if (!(WindowMask[i] & 0x01)) continue;
BGOBJLine[i+256] = BGOBJLine[i];
BGOBJLine[i] = c | 0x40000000;
}
}
}
template<bool mosaic, SoftRenderer::DrawPixel drawPixel>
void SoftRenderer::DrawBG_Text(u32 line, u32 bgnum)
{
u16 bgcnt = CurUnit->BGCnt[bgnum];
u32 tilesetaddr, tilemapaddr;
u16* pal;
u32 extpal, extpalslot;
u16 xoff = CurUnit->BGXPos[bgnum];
u16 yoff = CurUnit->BGYPos[bgnum] + line;
if (bgcnt & 0x0040)
{
// vertical mosaic
yoff -= CurUnit->BGMosaicY;
}
u32 widexmask = (bgcnt & 0x4000) ? 0x100 : 0;
extpal = (CurUnit->DispCnt & 0x40000000);
if (extpal) extpalslot = ((bgnum<2) && (bgcnt&0x2000)) ? (2+bgnum) : bgnum;
u8* bgvram;
u32 bgvrammask;
CurUnit->GetBGVRAM(bgvram, bgvrammask);
if (CurUnit->Num)
{
tilesetaddr = ((bgcnt & 0x003C) << 12);
tilemapaddr = ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0x400];
}
else
{
tilesetaddr = ((CurUnit->DispCnt & 0x07000000) >> 8) + ((bgcnt & 0x003C) << 12);
tilemapaddr = ((CurUnit->DispCnt & 0x38000000) >> 11) + ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0];
}
// adjust Y position in tilemap
if (bgcnt & 0x8000)
{
tilemapaddr += ((yoff & 0x1F8) << 3);
if (bgcnt & 0x4000)
tilemapaddr += ((yoff & 0x100) << 3);
}
else
tilemapaddr += ((yoff & 0xF8) << 3);
u16 curtile;
u16* curpal;
u32 pixelsaddr;
u8 color;
u32 lastxpos;
if (bgcnt & 0x0080)
{
// 256-color
// preload shit as needed
if ((xoff & 0x7) || mosaic)
{
curtile = *(u16*)&bgvram[(tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3)) & bgvrammask];
if (extpal) curpal = CurUnit->GetBGExtPal(extpalslot, curtile>>12);
else curpal = pal;
pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 6)
+ (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 3);
}
if (mosaic) lastxpos = xoff;
for (int i = 0; i < 256; i++)
{
u32 xpos;
if (mosaic) xpos = xoff - CurBGXMosaicTable[i];
else xpos = xoff;
if ((!mosaic && (!(xpos & 0x7))) ||
(mosaic && ((xpos >> 3) != (lastxpos >> 3))))
{
// load a new tile
curtile = *(u16*)&bgvram[(tilemapaddr + ((xpos & 0xF8) >> 2) + ((xpos & widexmask) << 3)) & bgvrammask];
if (extpal) curpal = CurUnit->GetBGExtPal(extpalslot, curtile>>12);
else curpal = pal;
pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 6)
+ (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 3);
if (mosaic) lastxpos = xpos;
}
// draw pixel
if (WindowMask[i] & (1<<bgnum))
{
u32 tilexoff = (curtile & 0x0400) ? (7-(xpos&0x7)) : (xpos&0x7);
color = bgvram[(pixelsaddr + tilexoff) & bgvrammask];
if (color)
drawPixel(&BGOBJLine[i], curpal[color], 0x01000000<<bgnum);
}
xoff++;
}
}
else
{
// 16-color
// preload shit as needed
if ((xoff & 0x7) || mosaic)
{
curtile = *(u16*)&bgvram[((tilemapaddr + ((xoff & 0xF8) >> 2) + ((xoff & widexmask) << 3))) & bgvrammask];
curpal = pal + ((curtile & 0xF000) >> 8);
pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 5)
+ (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 2);
}
if (mosaic) lastxpos = xoff;
for (int i = 0; i < 256; i++)
{
u32 xpos;
if (mosaic) xpos = xoff - CurBGXMosaicTable[i];
else xpos = xoff;
if ((!mosaic && (!(xpos & 0x7))) ||
(mosaic && ((xpos >> 3) != (lastxpos >> 3))))
{
// load a new tile
curtile = *(u16*)&bgvram[(tilemapaddr + ((xpos & 0xF8) >> 2) + ((xpos & widexmask) << 3)) & bgvrammask];
curpal = pal + ((curtile & 0xF000) >> 8);
pixelsaddr = tilesetaddr + ((curtile & 0x03FF) << 5)
+ (((curtile & 0x0800) ? (7-(yoff&0x7)) : (yoff&0x7)) << 2);
if (mosaic) lastxpos = xpos;
}
// draw pixel
if (WindowMask[i] & (1<<bgnum))
{
u32 tilexoff = (curtile & 0x0400) ? (7-(xpos&0x7)) : (xpos&0x7);
if (tilexoff & 0x1)
{
color = bgvram[(pixelsaddr + (tilexoff >> 1)) & bgvrammask] >> 4;
}
else
{
color = bgvram[(pixelsaddr + (tilexoff >> 1)) & bgvrammask] & 0x0F;
}
if (color)
drawPixel(&BGOBJLine[i], curpal[color], 0x01000000<<bgnum);
}
xoff++;
}
}
}
template<bool mosaic, SoftRenderer::DrawPixel drawPixel>
void SoftRenderer::DrawBG_Affine(u32 line, u32 bgnum)
{
u16 bgcnt = CurUnit->BGCnt[bgnum];
u32 tilesetaddr, tilemapaddr;
u16* pal;
u32 coordmask;
u32 yshift;
switch (bgcnt & 0xC000)
{
case 0x0000: coordmask = 0x07800; yshift = 7; break;
case 0x4000: coordmask = 0x0F800; yshift = 8; break;
case 0x8000: coordmask = 0x1F800; yshift = 9; break;
case 0xC000: coordmask = 0x3F800; yshift = 10; break;
}
u32 overflowmask;
if (bgcnt & 0x2000) overflowmask = 0;
else overflowmask = ~(coordmask | 0x7FF);
s16 rotA = CurUnit->BGRotA[bgnum-2];
s16 rotB = CurUnit->BGRotB[bgnum-2];
s16 rotC = CurUnit->BGRotC[bgnum-2];
s16 rotD = CurUnit->BGRotD[bgnum-2];
s32 rotX = CurUnit->BGXRefInternal[bgnum-2];
s32 rotY = CurUnit->BGYRefInternal[bgnum-2];
if (bgcnt & 0x0040)
{
// vertical mosaic
rotX -= (CurUnit->BGMosaicY * rotB);
rotY -= (CurUnit->BGMosaicY * rotD);
}
u8* bgvram;
u32 bgvrammask;
CurUnit->GetBGVRAM(bgvram, bgvrammask);
if (CurUnit->Num)
{
tilesetaddr = ((bgcnt & 0x003C) << 12);
tilemapaddr = ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0x400];
}
else
{
tilesetaddr = ((CurUnit->DispCnt & 0x07000000) >> 8) + ((bgcnt & 0x003C) << 12);
tilemapaddr = ((CurUnit->DispCnt & 0x38000000) >> 11) + ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0];
}
u16 curtile;
u8 color;
yshift -= 3;
for (int i = 0; i < 256; i++)
{
if (WindowMask[i] & (1<<bgnum))
{
s32 finalX, finalY;
if (mosaic)
{
int im = CurBGXMosaicTable[i];
finalX = rotX - (im * rotA);
finalY = rotY - (im * rotC);
}
else
{
finalX = rotX;
finalY = rotY;
}
if ((!((finalX|finalY) & overflowmask)))
{
curtile = bgvram[(tilemapaddr + ((((finalY & coordmask) >> 11) << yshift) + ((finalX & coordmask) >> 11))) & bgvrammask];
// draw pixel
u32 tilexoff = (finalX >> 8) & 0x7;
u32 tileyoff = (finalY >> 8) & 0x7;
color = bgvram[(tilesetaddr + (curtile << 6) + (tileyoff << 3) + tilexoff) & bgvrammask];
if (color)
drawPixel(&BGOBJLine[i], pal[color], 0x01000000<<bgnum);
}
}
rotX += rotA;
rotY += rotC;
}
CurUnit->BGXRefInternal[bgnum-2] += rotB;
CurUnit->BGYRefInternal[bgnum-2] += rotD;
}
template<bool mosaic, SoftRenderer::DrawPixel drawPixel>
void SoftRenderer::DrawBG_Extended(u32 line, u32 bgnum)
{
u16 bgcnt = CurUnit->BGCnt[bgnum];
u32 tilesetaddr, tilemapaddr;
u16* pal;
u32 extpal;
u8* bgvram;
u32 bgvrammask;
CurUnit->GetBGVRAM(bgvram, bgvrammask);
extpal = (CurUnit->DispCnt & 0x40000000);
s16 rotA = CurUnit->BGRotA[bgnum-2];
s16 rotB = CurUnit->BGRotB[bgnum-2];
s16 rotC = CurUnit->BGRotC[bgnum-2];
s16 rotD = CurUnit->BGRotD[bgnum-2];
s32 rotX = CurUnit->BGXRefInternal[bgnum-2];
s32 rotY = CurUnit->BGYRefInternal[bgnum-2];
if (bgcnt & 0x0040)
{
// vertical mosaic
rotX -= (CurUnit->BGMosaicY * rotB);
rotY -= (CurUnit->BGMosaicY * rotD);
}
if (bgcnt & 0x0080)
{
// bitmap modes
u32 xmask, ymask;
u32 yshift;
switch (bgcnt & 0xC000)
{
case 0x0000: xmask = 0x07FFF; ymask = 0x07FFF; yshift = 7; break;
case 0x4000: xmask = 0x0FFFF; ymask = 0x0FFFF; yshift = 8; break;
case 0x8000: xmask = 0x1FFFF; ymask = 0x0FFFF; yshift = 9; break;
case 0xC000: xmask = 0x1FFFF; ymask = 0x1FFFF; yshift = 9; break;
}
u32 ofxmask, ofymask;
if (bgcnt & 0x2000)
{
ofxmask = 0;
ofymask = 0;
}
else
{
ofxmask = ~xmask;
ofymask = ~ymask;
}
if (CurUnit->Num) tilemapaddr = ((bgcnt & 0x1F00) << 6);
else tilemapaddr = ((bgcnt & 0x1F00) << 6);
if (bgcnt & 0x0004)
{
// direct color bitmap
u16 color;
for (int i = 0; i < 256; i++)
{
if (WindowMask[i] & (1<<bgnum))
{
s32 finalX, finalY;
if (mosaic)
{
int im = CurBGXMosaicTable[i];
finalX = rotX - (im * rotA);
finalY = rotY - (im * rotC);
}
else
{
finalX = rotX;
finalY = rotY;
}
if (!(finalX & ofxmask) && !(finalY & ofymask))
{
color = *(u16*)&bgvram[(tilemapaddr + (((((finalY & ymask) >> 8) << yshift) + ((finalX & xmask) >> 8)) << 1)) & bgvrammask];
if (color & 0x8000)
drawPixel(&BGOBJLine[i], color, 0x01000000<<bgnum);
}
}
rotX += rotA;
rotY += rotC;
}
}
else
{
// 256-color bitmap
if (CurUnit->Num) pal = (u16*)&GPU::Palette[0x400];
else pal = (u16*)&GPU::Palette[0];
u8 color;
for (int i = 0; i < 256; i++)
{
if (WindowMask[i] & (1<<bgnum))
{
s32 finalX, finalY;
if (mosaic)
{
int im = CurBGXMosaicTable[i];
finalX = rotX - (im * rotA);
finalY = rotY - (im * rotC);
}
else
{
finalX = rotX;
finalY = rotY;
}
if (!(finalX & ofxmask) && !(finalY & ofymask))
{
color = bgvram[(tilemapaddr + (((finalY & ymask) >> 8) << yshift) + ((finalX & xmask) >> 8)) & bgvrammask];
if (color)
drawPixel(&BGOBJLine[i], pal[color], 0x01000000<<bgnum);
}
}
rotX += rotA;
rotY += rotC;
}
}
}
else
{
// mixed affine/text mode
u32 coordmask;
u32 yshift;
switch (bgcnt & 0xC000)
{
case 0x0000: coordmask = 0x07800; yshift = 7; break;
case 0x4000: coordmask = 0x0F800; yshift = 8; break;
case 0x8000: coordmask = 0x1F800; yshift = 9; break;
case 0xC000: coordmask = 0x3F800; yshift = 10; break;
}
u32 overflowmask;
if (bgcnt & 0x2000) overflowmask = 0;
else overflowmask = ~(coordmask | 0x7FF);
if (CurUnit->Num)
{
tilesetaddr = ((bgcnt & 0x003C) << 12);
tilemapaddr = ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0x400];
}
else
{
tilesetaddr = ((CurUnit->DispCnt & 0x07000000) >> 8) + ((bgcnt & 0x003C) << 12);
tilemapaddr = ((CurUnit->DispCnt & 0x38000000) >> 11) + ((bgcnt & 0x1F00) << 3);
pal = (u16*)&GPU::Palette[0];
}
u16 curtile;
u16* curpal;
u8 color;
yshift -= 3;
for (int i = 0; i < 256; i++)
{
if (WindowMask[i] & (1<<bgnum))
{
s32 finalX, finalY;
if (mosaic)
{
int im = CurBGXMosaicTable[i];
finalX = rotX - (im * rotA);
finalY = rotY - (im * rotC);
}
else
{
finalX = rotX;
finalY = rotY;
}
if ((!((finalX|finalY) & overflowmask)))
{
curtile = *(u16*)&bgvram[(tilemapaddr + (((((finalY & coordmask) >> 11) << yshift) + ((finalX & coordmask) >> 11)) << 1)) & bgvrammask];
if (extpal) curpal = CurUnit->GetBGExtPal(bgnum, curtile>>12);
else curpal = pal;
// draw pixel
u32 tilexoff = (finalX >> 8) & 0x7;
u32 tileyoff = (finalY >> 8) & 0x7;
if (curtile & 0x0400) tilexoff = 7-tilexoff;
if (curtile & 0x0800) tileyoff = 7-tileyoff;
color = bgvram[(tilesetaddr + ((curtile & 0x03FF) << 6) + (tileyoff << 3) + tilexoff) & bgvrammask];
if (color)
drawPixel(&BGOBJLine[i], curpal[color], 0x01000000<<bgnum);
}
}
rotX += rotA;
rotY += rotC;
}
}
CurUnit->BGXRefInternal[bgnum-2] += rotB;
CurUnit->BGYRefInternal[bgnum-2] += rotD;
}
template<bool mosaic, SoftRenderer::DrawPixel drawPixel>
void SoftRenderer::DrawBG_Large(u32 line) // BG is always BG2
{
u16 bgcnt = CurUnit->BGCnt[2];
u16* pal;
// large BG sizes:
// 0: 512x1024
// 1: 1024x512
// 2: 512x256
// 3: 512x512
u32 xmask, ymask;
u32 yshift;
switch (bgcnt & 0xC000)
{
case 0x0000: xmask = 0x1FFFF; ymask = 0x3FFFF; yshift = 9; break;
case 0x4000: xmask = 0x3FFFF; ymask = 0x1FFFF; yshift = 10; break;
case 0x8000: xmask = 0x1FFFF; ymask = 0x0FFFF; yshift = 9; break;
case 0xC000: xmask = 0x1FFFF; ymask = 0x1FFFF; yshift = 9; break;
}
u32 ofxmask, ofymask;
if (bgcnt & 0x2000)
{
ofxmask = 0;
ofymask = 0;
}
else
{
ofxmask = ~xmask;
ofymask = ~ymask;
}
s16 rotA = CurUnit->BGRotA[0];
s16 rotB = CurUnit->BGRotB[0];
s16 rotC = CurUnit->BGRotC[0];
s16 rotD = CurUnit->BGRotD[0];
s32 rotX = CurUnit->BGXRefInternal[0];
s32 rotY = CurUnit->BGYRefInternal[0];
if (bgcnt & 0x0040)
{
// vertical mosaic
rotX -= (CurUnit->BGMosaicY * rotB);
rotY -= (CurUnit->BGMosaicY * rotD);
}
u8* bgvram;
u32 bgvrammask;
CurUnit->GetBGVRAM(bgvram, bgvrammask);
// 256-color bitmap
if (CurUnit->Num) pal = (u16*)&GPU::Palette[0x400];
else pal = (u16*)&GPU::Palette[0];
u8 color;
for (int i = 0; i < 256; i++)
{
if (WindowMask[i] & (1<<2))
{
s32 finalX, finalY;
if (mosaic)
{
int im = CurBGXMosaicTable[i];
finalX = rotX - (im * rotA);
finalY = rotY - (im * rotC);
}
else
{
finalX = rotX;
finalY = rotY;
}
if (!(finalX & ofxmask) && !(finalY & ofymask))
{
color = bgvram[((((finalY & ymask) >> 8) << yshift) + ((finalX & xmask) >> 8)) & bgvrammask];
if (color)
drawPixel(&BGOBJLine[i], pal[color], 0x01000000<<2);
}
}
rotX += rotA;
rotY += rotC;
}
CurUnit->BGXRefInternal[0] += rotB;
CurUnit->BGYRefInternal[0] += rotD;
}
// OBJ line buffer:
// * bit0-15: color (bit15=1: direct color, bit15=0: palette index, bit12=0 to indicate extpal)
// * bit16-17: BG-relative priority
// * bit18: non-transparent sprite pixel exists here
// * bit19: X mosaic should be applied here
// * bit24-31: compositor flags
void SoftRenderer::ApplySpriteMosaicX()
{
// apply X mosaic if needed
// X mosaic for sprites is applied after all sprites are rendered
if (CurUnit->OBJMosaicSize[0] == 0) return;
u32* objLine = OBJLine[CurUnit->Num];
u8* objIndex = OBJIndex[CurUnit->Num];
u8* curOBJXMosaicTable = MosaicTable[CurUnit->OBJMosaicSize[1]];
u32 lastcolor = objLine[0];
for (u32 i = 1; i < 256; i++)
{
if (!(objLine[i] & 0x100000))
{
// not a mosaic'd sprite pixel
continue;
}
if ((objIndex[i] != objIndex[i-1]) || (curOBJXMosaicTable[i] == 0))
lastcolor = objLine[i];
else
objLine[i] = lastcolor;
}
}
template <SoftRenderer::DrawPixel drawPixel>
void SoftRenderer::InterleaveSprites(u32 prio)
{
u32* objLine = OBJLine[CurUnit->Num];
u16* pal = (u16*)&GPU::Palette[CurUnit->Num ? 0x600 : 0x200];
if (CurUnit->DispCnt & 0x80000000)
{
u16* extpal = CurUnit->GetOBJExtPal();
for (u32 i = 0; i < 256; i++)
{
if ((objLine[i] & 0x70000) != prio) continue;
if (!(WindowMask[i] & 0x10)) continue;
u16 color;
u32 pixel = objLine[i];
if (pixel & 0x8000)
color = pixel & 0x7FFF;
else if (pixel & 0x1000)
color = pal[pixel & 0xFF];
else
color = extpal[pixel & 0xFFF];
drawPixel(&BGOBJLine[i], color, pixel & 0xFF000000);
}
}
else
{
// optimized no-extpal version
for (u32 i = 0; i < 256; i++)
{
if ((objLine[i] & 0x70000) != prio) continue;
if (!(WindowMask[i] & 0x10)) continue;
u16 color;
u32 pixel = objLine[i];
if (pixel & 0x8000)
color = pixel & 0x7FFF;
else
color = pal[pixel & 0xFF];
drawPixel(&BGOBJLine[i], color, pixel & 0xFF000000);
}
}
}
#define DoDrawSprite(type, ...) \
if (iswin) \
{ \
DrawSprite_##type<true>(__VA_ARGS__); \
} \
else \
{ \
DrawSprite_##type<false>(__VA_ARGS__); \
}
void SoftRenderer::DrawSprites(u32 line, Unit* unit)
{
CurUnit = unit;
if (line == 0)
{
// reset those counters here
// TODO: find out when those are supposed to be reset
// it would make sense to reset them at the end of VBlank
// however, sprites are rendered one scanline in advance
// so they need to be reset a bit earlier
CurUnit->OBJMosaicY = 0;
CurUnit->OBJMosaicYCount = 0;
}
if (CurUnit->Num == 0)
{
auto objDirty = GPU::VRAMDirty_AOBJ.DeriveState(GPU::VRAMMap_AOBJ);
GPU::MakeVRAMFlat_AOBJCoherent(objDirty);
}
else
{
auto objDirty = GPU::VRAMDirty_BOBJ.DeriveState(GPU::VRAMMap_BOBJ);
GPU::MakeVRAMFlat_BOBJCoherent(objDirty);
}
NumSprites[CurUnit->Num] = 0;
memset(OBJLine[CurUnit->Num], 0, 256*4);
memset(OBJWindow[CurUnit->Num], 0, 256);
if (!(CurUnit->DispCnt & 0x1000)) return;
memset(OBJIndex, 0xFF, 256);
u16* oam = (u16*)&GPU::OAM[CurUnit->Num ? 0x400 : 0];
const s32 spritewidth[16] =
{
8, 16, 8, 8,
16, 32, 8, 8,
32, 32, 16, 8,
64, 64, 32, 8
};
const s32 spriteheight[16] =
{
8, 8, 16, 8,
16, 8, 32, 8,
32, 16, 32, 8,
64, 32, 64, 8
};
for (int bgnum = 0x0C00; bgnum >= 0x0000; bgnum -= 0x0400)
{
for (int sprnum = 127; sprnum >= 0; sprnum--)
{
u16* attrib = &oam[sprnum*4];
if ((attrib[2] & 0x0C00) != bgnum)
continue;
bool iswin = (((attrib[0] >> 10) & 0x3) == 2);
u32 sprline;
if ((attrib[0] & 0x1000) && !iswin)
{
// apply Y mosaic
sprline = CurUnit->OBJMosaicY;
}
else
sprline = line;
if (attrib[0] & 0x0100)
{
u32 sizeparam = (attrib[0] >> 14) | ((attrib[1] & 0xC000) >> 12);
s32 width = spritewidth[sizeparam];
s32 height = spriteheight[sizeparam];
s32 boundwidth = width;
s32 boundheight = height;
if (attrib[0] & 0x0200)
{
boundwidth <<= 1;
boundheight <<= 1;
}
u32 ypos = attrib[0] & 0xFF;
ypos = (sprline - ypos) & 0xFF;
if (ypos >= (u32)boundheight)
continue;
s32 xpos = (s32)(attrib[1] << 23) >> 23;
if (xpos <= -boundwidth)
continue;
u32 rotparamgroup = (attrib[1] >> 9) & 0x1F;
DoDrawSprite(Rotscale, sprnum, boundwidth, boundheight, width, height, xpos, ypos);
NumSprites[CurUnit->Num]++;
}
else
{
if (attrib[0] & 0x0200)
continue;
u32 sizeparam = (attrib[0] >> 14) | ((attrib[1] & 0xC000) >> 12);
s32 width = spritewidth[sizeparam];
s32 height = spriteheight[sizeparam];
u32 ypos = attrib[0] & 0xFF;
ypos = (sprline - ypos) & 0xFF;
if (ypos >= (u32)height)
continue;
s32 xpos = (s32)(attrib[1] << 23) >> 23;
if (xpos <= -width)
continue;
DoDrawSprite(Normal, sprnum, width, height, xpos, ypos);
NumSprites[CurUnit->Num]++;
}
}
}
}
template<bool window>
void SoftRenderer::DrawSprite_Rotscale(u32 num, u32 boundwidth, u32 boundheight, u32 width, u32 height, s32 xpos, s32 ypos)
{
u16* oam = (u16*)&GPU::OAM[CurUnit->Num ? 0x400 : 0];
u16* attrib = &oam[num * 4];
u16* rotparams = &oam[(((attrib[1] >> 9) & 0x1F) * 16) + 3];
u32 pixelattr = ((attrib[2] & 0x0C00) << 6) | 0xC0000;
u32 tilenum = attrib[2] & 0x03FF;
u32 spritemode = window ? 0 : ((attrib[0] >> 10) & 0x3);
u32 ytilefactor;
u8* objvram;
u32 objvrammask;
CurUnit->GetOBJVRAM(objvram, objvrammask);
u32* objLine = OBJLine[CurUnit->Num];
u8* objIndex = OBJIndex[CurUnit->Num];
u8* objWindow = OBJWindow[CurUnit->Num];
s32 centerX = boundwidth >> 1;
s32 centerY = boundheight >> 1;
if ((attrib[0] & 0x1000) && !window)
{
// apply Y mosaic
pixelattr |= 0x100000;
}
u32 xoff;
if (xpos >= 0)
{
xoff = 0;
if ((xpos+boundwidth) > 256)
boundwidth = 256-xpos;
}
else
{
xoff = -xpos;
xpos = 0;
}
s16 rotA = (s16)rotparams[0];
s16 rotB = (s16)rotparams[4];
s16 rotC = (s16)rotparams[8];
s16 rotD = (s16)rotparams[12];
s32 rotX = ((xoff-centerX) * rotA) + ((ypos-centerY) * rotB) + (width << 7);
s32 rotY = ((xoff-centerX) * rotC) + ((ypos-centerY) * rotD) + (height << 7);
width <<= 8;
height <<= 8;
u16 color = 0; // transparent in all cases
if (spritemode == 3)
{
u32 alpha = attrib[2] >> 12;
if (!alpha) return;
alpha++;
pixelattr |= (0xC0000000 | (alpha << 24));
u32 pixelsaddr;
if (CurUnit->DispCnt & 0x40)
{
if (CurUnit->DispCnt & 0x20)
{
// 'reserved'
// draws nothing
return;
}
else
{
pixelsaddr = tilenum << (7 + ((CurUnit->DispCnt >> 22) & 0x1));
ytilefactor = ((width >> 8) * 2);
}
}
else
{
if (CurUnit->DispCnt & 0x20)
{
pixelsaddr = ((tilenum & 0x01F) << 4) + ((tilenum & 0x3E0) << 7);
ytilefactor = (256 * 2);
}
else
{
pixelsaddr = ((tilenum & 0x00F) << 4) + ((tilenum & 0x3F0) << 7);
ytilefactor = (128 * 2);
}
}
for (; xoff < boundwidth;)
{
if ((u32)rotX < width && (u32)rotY < height)
{
color = *(u16*)&objvram[(pixelsaddr + ((rotY >> 8) * ytilefactor) + ((rotX >> 8) << 1)) & objvrammask];
if (color & 0x8000)
{
if (window) objWindow[xpos] = 1;
else { objLine[xpos] = color | pixelattr; objIndex[xpos] = num; }
}
else if (!window)
{
if (objLine[xpos] == 0)
{
objLine[xpos] = pixelattr & 0x180000;
objIndex[xpos] = num;
}
}
}
rotX += rotA;
rotY += rotC;
xoff++;
xpos++;
}
}
else
{
u32 pixelsaddr = tilenum;
if (CurUnit->DispCnt & 0x10)
{
pixelsaddr <<= ((CurUnit->DispCnt >> 20) & 0x3);
ytilefactor = (width >> 11) << ((attrib[0] & 0x2000) ? 1:0);
}
else
{
ytilefactor = 0x20;
}
if (spritemode == 1) pixelattr |= 0x80000000;
else pixelattr |= 0x10000000;
ytilefactor <<= 5;
pixelsaddr <<= 5;
if (attrib[0] & 0x2000)
{
// 256-color
if (!window)
{
if (!(CurUnit->DispCnt & 0x80000000))
pixelattr |= 0x1000;
else
pixelattr |= ((attrib[2] & 0xF000) >> 4);
}
for (; xoff < boundwidth;)
{
if ((u32)rotX < width && (u32)rotY < height)
{
color = objvram[(pixelsaddr + ((rotY>>11)*ytilefactor) + ((rotY&0x700)>>5) + ((rotX>>11)*64) + ((rotX&0x700)>>8)) & objvrammask];
if (color)
{
if (window) objWindow[xpos] = 1;
else { objLine[xpos] = color | pixelattr; objIndex[xpos] = num; }
}
else if (!window)
{
if (objLine[xpos] == 0)
{
objLine[xpos] = pixelattr & 0x180000;
objIndex[xpos] = num;
}
}
}
rotX += rotA;
rotY += rotC;
xoff++;
xpos++;
}
}
else
{
// 16-color
if (!window)
{
pixelattr |= 0x1000;
pixelattr |= ((attrib[2] & 0xF000) >> 8);
}
for (; xoff < boundwidth;)
{
if ((u32)rotX < width && (u32)rotY < height)
{
color = objvram[(pixelsaddr + ((rotY>>11)*ytilefactor) + ((rotY&0x700)>>6) + ((rotX>>11)*32) + ((rotX&0x700)>>9)) & objvrammask];
if (rotX & 0x100)
color >>= 4;
else
color &= 0x0F;
if (color)
{
if (window) objWindow[xpos] = 1;
else { objLine[xpos] = color | pixelattr; objIndex[xpos] = num; }
}
else if (!window)
{
if (objLine[xpos] == 0)
{
objLine[xpos] = pixelattr & 0x180000;
objIndex[xpos] = num;
}
}
}
rotX += rotA;
rotY += rotC;
xoff++;
xpos++;
}
}
}
}
template<bool window>
void SoftRenderer::DrawSprite_Normal(u32 num, u32 width, u32 height, s32 xpos, s32 ypos)
{
u16* oam = (u16*)&GPU::OAM[CurUnit->Num ? 0x400 : 0];
u16* attrib = &oam[num * 4];
u32 pixelattr = ((attrib[2] & 0x0C00) << 6) | 0xC0000;
u32 tilenum = attrib[2] & 0x03FF;
u32 spritemode = window ? 0 : ((attrib[0] >> 10) & 0x3);
u32 wmask = width - 8; // really ((width - 1) & ~0x7)
if ((attrib[0] & 0x1000) && !window)
{
// apply Y mosaic
pixelattr |= 0x100000;
}
u8* objvram;
u32 objvrammask;
CurUnit->GetOBJVRAM(objvram, objvrammask);
u32* objLine = OBJLine[CurUnit->Num];
u8* objIndex = OBJIndex[CurUnit->Num];
u8* objWindow = OBJWindow[CurUnit->Num];
// yflip
if (attrib[1] & 0x2000)
ypos = height-1 - ypos;
u32 xoff;
u32 xend = width;
if (xpos >= 0)
{
xoff = 0;
if ((xpos+xend) > 256)
xend = 256-xpos;
}
else
{
xoff = -xpos;
xpos = 0;
}
u16 color = 0; // transparent in all cases
if (spritemode == 3)
{
// bitmap sprite
u32 alpha = attrib[2] >> 12;
if (!alpha) return;
alpha++;
pixelattr |= (0xC0000000 | (alpha << 24));
u32 pixelsaddr = tilenum;
if (CurUnit->DispCnt & 0x40)
{
if (CurUnit->DispCnt & 0x20)
{
// 'reserved'
// draws nothing
return;
}
else
{
pixelsaddr <<= (7 + ((CurUnit->DispCnt >> 22) & 0x1));
pixelsaddr += (ypos * width * 2);
}
}
else
{
if (CurUnit->DispCnt & 0x20)
{
pixelsaddr = ((tilenum & 0x01F) << 4) + ((tilenum & 0x3E0) << 7);
pixelsaddr += (ypos * 256 * 2);
}
else
{
pixelsaddr = ((tilenum & 0x00F) << 4) + ((tilenum & 0x3F0) << 7);
pixelsaddr += (ypos * 128 * 2);
}
}
s32 pixelstride;
if (attrib[1] & 0x1000) // xflip
{
pixelsaddr += ((width-1) << 1);
pixelsaddr -= (xoff << 1);
pixelstride = -2;
}
else
{
pixelsaddr += (xoff << 1);
pixelstride = 2;
}
for (; xoff < xend;)
{
color = *(u16*)&objvram[pixelsaddr & objvrammask];
pixelsaddr += pixelstride;
if (color & 0x8000)
{
if (window) objWindow[xpos] = 1;
else { objLine[xpos] = color | pixelattr; objIndex[xpos] = num; }
}
else if (!window)
{
if (objLine[xpos] == 0)
{
objLine[xpos] = pixelattr & 0x180000;
objIndex[xpos] = num;
}
}
xoff++;
xpos++;
}
}
else
{
u32 pixelsaddr = tilenum;
if (CurUnit->DispCnt & 0x10)
{
pixelsaddr <<= ((CurUnit->DispCnt >> 20) & 0x3);
pixelsaddr += ((ypos >> 3) * (width >> 3)) << ((attrib[0] & 0x2000) ? 1:0);
}
else
{
pixelsaddr += ((ypos >> 3) * 0x20);
}
if (spritemode == 1) pixelattr |= 0x80000000;
else pixelattr |= 0x10000000;
if (attrib[0] & 0x2000)
{
// 256-color
pixelsaddr <<= 5;
pixelsaddr += ((ypos & 0x7) << 3);
s32 pixelstride;
if (!window)
{
if (!(CurUnit->DispCnt & 0x80000000))
pixelattr |= 0x1000;
else
pixelattr |= ((attrib[2] & 0xF000) >> 4);
}
if (attrib[1] & 0x1000) // xflip
{
pixelsaddr += (((width-1) & wmask) << 3);
pixelsaddr += ((width-1) & 0x7);
pixelsaddr -= ((xoff & wmask) << 3);
pixelsaddr -= (xoff & 0x7);
pixelstride = -1;
}
else
{
pixelsaddr += ((xoff & wmask) << 3);
pixelsaddr += (xoff & 0x7);
pixelstride = 1;
}
for (; xoff < xend;)
{
color = objvram[pixelsaddr & objvrammask];
pixelsaddr += pixelstride;
if (color)
{
if (window) objWindow[xpos] = 1;
else { objLine[xpos] = color | pixelattr; objIndex[xpos] = num; }
}
else if (!window)
{
if (objLine[xpos] == 0)
{
objLine[xpos] = pixelattr & 0x180000;
objIndex[xpos] = num;
}
}
xoff++;
xpos++;
if (!(xoff & 0x7)) pixelsaddr += (56 * pixelstride);
}
}
else
{
// 16-color
pixelsaddr <<= 5;
pixelsaddr += ((ypos & 0x7) << 2);
s32 pixelstride;
if (!window)
{
pixelattr |= 0x1000;
pixelattr |= ((attrib[2] & 0xF000) >> 8);
}
// TODO: optimize VRAM access!!
// TODO: do xflip better? the 'two pixels per byte' thing makes it a bit shitty
if (attrib[1] & 0x1000) // xflip
{
pixelsaddr += (((width-1) & wmask) << 2);
pixelsaddr += (((width-1) & 0x7) >> 1);
pixelsaddr -= ((xoff & wmask) << 2);
pixelsaddr -= ((xoff & 0x7) >> 1);
pixelstride = -1;
}
else
{
pixelsaddr += ((xoff & wmask) << 2);
pixelsaddr += ((xoff & 0x7) >> 1);
pixelstride = 1;
}
for (; xoff < xend;)
{
if (attrib[1] & 0x1000)
{
if (xoff & 0x1) { color = objvram[pixelsaddr & objvrammask] & 0x0F; pixelsaddr--; }
else color = objvram[pixelsaddr & objvrammask] >> 4;
}
else
{
if (xoff & 0x1) { color = objvram[pixelsaddr & objvrammask] >> 4; pixelsaddr++; }
else color = objvram[pixelsaddr & objvrammask] & 0x0F;
}
if (color)
{
if (window) objWindow[xpos] = 1;
else { objLine[xpos] = color | pixelattr; objIndex[xpos] = num; }
}
else if (!window)
{
if (objLine[xpos] == 0)
{
objLine[xpos] = pixelattr & 0x180000;
objIndex[xpos] = num;
}
}
xoff++;
xpos++;
if (!(xoff & 0x7)) pixelsaddr += ((attrib[1] & 0x1000) ? -28 : 28);
}
}
}
}
}