melonDS/src/GPU.h
Jesse Talavera-Greenberg 346dd4006e
Move all core types into namespaces (#1886)
* Reorganize namespaces

- Most types are now moved into the `melonDS` namespace
- Only good chance to do this for a while, since a big refactor is next

* Fix the build
2023-11-25 18:32:09 +01:00

711 lines
20 KiB
C++

/*
Copyright 2016-2023 melonDS team
This file is part of melonDS.
melonDS is free software: you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.
melonDS is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with melonDS. If not, see http://www.gnu.org/licenses/.
*/
#ifndef GPU_H
#define GPU_H
#include <memory>
#include "GPU2D.h"
#include "GPU3D.h"
#include "NonStupidBitfield.h"
#ifdef OGLRENDERER_ENABLED
#include "GPU_OpenGL.h"
#endif
namespace melonDS
{
class GPU3D;
class ARMJIT;
static constexpr u32 VRAMDirtyGranularity = 512;
class GPU;
template <u32 Size, u32 MappingGranularity>
struct VRAMTrackingSet
{
u16 Mapping[Size / MappingGranularity];
const u32 VRAMBitsPerMapping = MappingGranularity / VRAMDirtyGranularity;
void Reset()
{
for (u32 i = 0; i < Size / MappingGranularity; i++)
{
// this is not a real VRAM bank
// so it will always be a mismatch => the bank will be completely invalidated
Mapping[i] = 0x8000;
}
}
NonStupidBitField<Size/VRAMDirtyGranularity> DeriveState(u32* currentMappings, GPU& gpu);
};
struct RenderSettings
{
bool Soft_Threaded;
int GL_ScaleFactor;
bool GL_BetterPolygons;
};
class GPU
{
public:
GPU(ARMJIT& jit) noexcept;
~GPU() noexcept;
void Reset() noexcept;
void Stop() noexcept;
void DoSavestate(Savestate* file) noexcept;
[[deprecated("Set the renderer directly instead of using an integer code")]] void InitRenderer(int renderer) noexcept;
void DeInitRenderer() noexcept;
void ResetRenderer() noexcept;
void SetRenderSettings(int renderer, RenderSettings& settings) noexcept;
u8* GetUniqueBankPtr(u32 mask, u32 offset) noexcept;
const u8* GetUniqueBankPtr(u32 mask, u32 offset) const noexcept;
void MapVRAM_AB(u32 bank, u8 cnt) noexcept;
void MapVRAM_CD(u32 bank, u8 cnt) noexcept;
void MapVRAM_E(u32 bank, u8 cnt) noexcept;
void MapVRAM_FG(u32 bank, u8 cnt) noexcept;
void MapVRAM_H(u32 bank, u8 cnt) noexcept;
void MapVRAM_I(u32 bank, u8 cnt) noexcept;
template<typename T>
T ReadVRAM_LCDC(u32 addr) const noexcept
{
int bank;
switch (addr & 0xFF8FC000)
{
case 0x06800000: case 0x06804000: case 0x06808000: case 0x0680C000:
case 0x06810000: case 0x06814000: case 0x06818000: case 0x0681C000:
bank = 0;
addr &= 0x1FFFF;
break;
case 0x06820000: case 0x06824000: case 0x06828000: case 0x0682C000:
case 0x06830000: case 0x06834000: case 0x06838000: case 0x0683C000:
bank = 1;
addr &= 0x1FFFF;
break;
case 0x06840000: case 0x06844000: case 0x06848000: case 0x0684C000:
case 0x06850000: case 0x06854000: case 0x06858000: case 0x0685C000:
bank = 2;
addr &= 0x1FFFF;
break;
case 0x06860000: case 0x06864000: case 0x06868000: case 0x0686C000:
case 0x06870000: case 0x06874000: case 0x06878000: case 0x0687C000:
bank = 3;
addr &= 0x1FFFF;
break;
case 0x06880000: case 0x06884000: case 0x06888000: case 0x0688C000:
bank = 4;
addr &= 0xFFFF;
break;
case 0x06890000:
bank = 5;
addr &= 0x3FFF;
break;
case 0x06894000:
bank = 6;
addr &= 0x3FFF;
break;
case 0x06898000:
case 0x0689C000:
bank = 7;
addr &= 0x7FFF;
break;
case 0x068A0000:
bank = 8;
addr &= 0x3FFF;
break;
default: return 0;
}
if (VRAMMap_LCDC & (1<<bank)) return *(T*)&VRAM[bank][addr];
return 0;
}
template<typename T>
void WriteVRAM_LCDC(u32 addr, T val)
{
int bank;
switch (addr & 0xFF8FC000)
{
case 0x06800000: case 0x06804000: case 0x06808000: case 0x0680C000:
case 0x06810000: case 0x06814000: case 0x06818000: case 0x0681C000:
bank = 0;
addr &= 0x1FFFF;
break;
case 0x06820000: case 0x06824000: case 0x06828000: case 0x0682C000:
case 0x06830000: case 0x06834000: case 0x06838000: case 0x0683C000:
bank = 1;
addr &= 0x1FFFF;
break;
case 0x06840000: case 0x06844000: case 0x06848000: case 0x0684C000:
case 0x06850000: case 0x06854000: case 0x06858000: case 0x0685C000:
bank = 2;
addr &= 0x1FFFF;
break;
case 0x06860000: case 0x06864000: case 0x06868000: case 0x0686C000:
case 0x06870000: case 0x06874000: case 0x06878000: case 0x0687C000:
bank = 3;
addr &= 0x1FFFF;
break;
case 0x06880000: case 0x06884000: case 0x06888000: case 0x0688C000:
bank = 4;
addr &= 0xFFFF;
break;
case 0x06890000:
bank = 5;
addr &= 0x3FFF;
break;
case 0x06894000:
bank = 6;
addr &= 0x3FFF;
break;
case 0x06898000:
case 0x0689C000:
bank = 7;
addr &= 0x7FFF;
break;
case 0x068A0000:
bank = 8;
addr &= 0x3FFF;
break;
default: return;
}
if (VRAMMap_LCDC & (1<<bank))
{
*(T*)&VRAM[bank][addr] = val;
VRAMDirty[bank][addr / VRAMDirtyGranularity] = true;
}
}
template<typename T>
T ReadVRAM_ABG(u32 addr) const noexcept
{
u8* ptr = VRAMPtr_ABG[(addr >> 14) & 0x1F];
if (ptr) return *(T*)&ptr[addr & 0x3FFF];
T ret = 0;
u32 mask = VRAMMap_ABG[(addr >> 14) & 0x1F];
if (mask & (1<<0)) ret |= *(T*)&VRAM_A[addr & 0x1FFFF];
if (mask & (1<<1)) ret |= *(T*)&VRAM_B[addr & 0x1FFFF];
if (mask & (1<<2)) ret |= *(T*)&VRAM_C[addr & 0x1FFFF];
if (mask & (1<<3)) ret |= *(T*)&VRAM_D[addr & 0x1FFFF];
if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0xFFFF];
if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF];
if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF];
return ret;
}
template<typename T>
void WriteVRAM_ABG(u32 addr, T val)
{
u32 mask = VRAMMap_ABG[(addr >> 14) & 0x1F];
if (mask & (1<<0))
{
VRAMDirty[0][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_A[addr & 0x1FFFF] = val;
}
if (mask & (1<<1))
{
VRAMDirty[1][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_B[addr & 0x1FFFF] = val;
}
if (mask & (1<<2))
{
VRAMDirty[2][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_C[addr & 0x1FFFF] = val;
}
if (mask & (1<<3))
{
VRAMDirty[3][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_D[addr & 0x1FFFF] = val;
}
if (mask & (1<<4))
{
VRAMDirty[4][(addr & 0xFFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_E[addr & 0xFFFF] = val;
}
if (mask & (1<<5))
{
VRAMDirty[5][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_F[addr & 0x3FFF] = val;
}
if (mask & (1<<6))
{
VRAMDirty[6][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_G[addr & 0x3FFF] = val;
}
}
template<typename T>
T ReadVRAM_AOBJ(u32 addr) const noexcept
{
u8* ptr = VRAMPtr_AOBJ[(addr >> 14) & 0xF];
if (ptr) return *(T*)&ptr[addr & 0x3FFF];
T ret = 0;
u32 mask = VRAMMap_AOBJ[(addr >> 14) & 0xF];
if (mask & (1<<0)) ret |= *(T*)&VRAM_A[addr & 0x1FFFF];
if (mask & (1<<1)) ret |= *(T*)&VRAM_B[addr & 0x1FFFF];
if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0xFFFF];
if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF];
if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF];
return ret;
}
template<typename T>
void WriteVRAM_AOBJ(u32 addr, T val)
{
u32 mask = VRAMMap_AOBJ[(addr >> 14) & 0xF];
if (mask & (1<<0))
{
VRAMDirty[0][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_A[addr & 0x1FFFF] = val;
}
if (mask & (1<<1))
{
VRAMDirty[1][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_B[addr & 0x1FFFF] = val;
}
if (mask & (1<<4))
{
VRAMDirty[4][(addr & 0xFFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_E[addr & 0xFFFF] = val;
}
if (mask & (1<<5))
{
VRAMDirty[5][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_F[addr & 0x3FFF] = val;
}
if (mask & (1<<6))
{
VRAMDirty[6][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_G[addr & 0x3FFF] = val;
}
}
template<typename T>
T ReadVRAM_BBG(u32 addr) const noexcept
{
u8* ptr = VRAMPtr_BBG[(addr >> 14) & 0x7];
if (ptr) return *(T*)&ptr[addr & 0x3FFF];
T ret = 0;
u32 mask = VRAMMap_BBG[(addr >> 14) & 0x7];
if (mask & (1<<2)) ret |= *(T*)&VRAM_C[addr & 0x1FFFF];
if (mask & (1<<7)) ret |= *(T*)&VRAM_H[addr & 0x7FFF];
if (mask & (1<<8)) ret |= *(T*)&VRAM_I[addr & 0x3FFF];
return ret;
}
template<typename T>
void WriteVRAM_BBG(u32 addr, T val)
{
u32 mask = VRAMMap_BBG[(addr >> 14) & 0x7];
if (mask & (1<<2))
{
VRAMDirty[2][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_C[addr & 0x1FFFF] = val;
}
if (mask & (1<<7))
{
VRAMDirty[7][(addr & 0x7FFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_H[addr & 0x7FFF] = val;
}
if (mask & (1<<8))
{
VRAMDirty[8][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_I[addr & 0x3FFF] = val;
}
}
template<typename T>
T ReadVRAM_BOBJ(u32 addr) const noexcept
{
u8* ptr = VRAMPtr_BOBJ[(addr >> 14) & 0x7];
if (ptr) return *(T*)&ptr[addr & 0x3FFF];
T ret = 0;
u32 mask = VRAMMap_BOBJ[(addr >> 14) & 0x7];
if (mask & (1<<3)) ret |= *(T*)&VRAM_D[addr & 0x1FFFF];
if (mask & (1<<8)) ret |= *(T*)&VRAM_I[addr & 0x3FFF];
return ret;
}
template<typename T>
void WriteVRAM_BOBJ(u32 addr, T val)
{
u32 mask = VRAMMap_BOBJ[(addr >> 14) & 0x7];
if (mask & (1<<3))
{
VRAMDirty[3][(addr & 0x1FFFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_D[addr & 0x1FFFF] = val;
}
if (mask & (1<<8))
{
VRAMDirty[8][(addr & 0x3FFF) / VRAMDirtyGranularity] = true;
*(T*)&VRAM_I[addr & 0x3FFF] = val;
}
}
template<typename T>
T ReadVRAM_ARM7(u32 addr) const noexcept
{
T ret = 0;
u32 mask = VRAMMap_ARM7[(addr >> 17) & 0x1];
if (mask & (1<<2)) ret |= *(T*)&VRAM_C[addr & 0x1FFFF];
if (mask & (1<<3)) ret |= *(T*)&VRAM_D[addr & 0x1FFFF];
return ret;
}
template<typename T>
void WriteVRAM_ARM7(u32 addr, T val)
{
u32 mask = VRAMMap_ARM7[(addr >> 17) & 0x1];
if (mask & (1<<2)) *(T*)&VRAM_C[addr & 0x1FFFF] = val;
if (mask & (1<<3)) *(T*)&VRAM_D[addr & 0x1FFFF] = val;
}
template<typename T>
T ReadVRAM_BG(u32 addr) const noexcept
{
if ((addr & 0xFFE00000) == 0x06000000)
return ReadVRAM_ABG<T>(addr);
else
return ReadVRAM_BBG<T>(addr);
}
template<typename T>
T ReadVRAM_OBJ(u32 addr) const noexcept
{
if ((addr & 0xFFE00000) == 0x06400000)
return ReadVRAM_AOBJ<T>(addr);
else
return ReadVRAM_BOBJ<T>(addr);
}
template<typename T>
T ReadVRAM_Texture(u32 addr) const noexcept
{
T ret = 0;
u32 mask = VRAMMap_Texture[(addr >> 17) & 0x3];
if (mask & (1<<0)) ret |= *(T*)&VRAM_A[addr & 0x1FFFF];
if (mask & (1<<1)) ret |= *(T*)&VRAM_B[addr & 0x1FFFF];
if (mask & (1<<2)) ret |= *(T*)&VRAM_C[addr & 0x1FFFF];
if (mask & (1<<3)) ret |= *(T*)&VRAM_D[addr & 0x1FFFF];
return ret;
}
template<typename T>
T ReadVRAM_TexPal(u32 addr) const noexcept
{
T ret = 0;
u32 mask = VRAMMap_TexPal[(addr >> 14) & 0x7];
if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0xFFFF];
if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF];
if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF];
return ret;
}
template<typename T>
T ReadPalette(u32 addr) const noexcept
{
return *(T*)&Palette[addr & 0x7FF];
}
template<typename T>
void WritePalette(u32 addr, T val)
{
addr &= 0x7FF;
*(T*)&Palette[addr] = val;
PaletteDirty |= 1 << (addr / VRAMDirtyGranularity);
}
template<typename T>
T ReadOAM(u32 addr) const noexcept
{
return *(T*)&OAM[addr & 0x7FF];
}
template<typename T>
void WriteOAM(u32 addr, T val)
{
addr &= 0x7FF;
*(T*)&OAM[addr] = val;
OAMDirty |= 1 << (addr / 1024);
}
void SetPowerCnt(u32 val) noexcept;
void StartFrame() noexcept;
void FinishFrame(u32 lines) noexcept;
void BlankFrame() noexcept;
void StartScanline(u32 line) noexcept;
void StartHBlank(u32 line) noexcept;
void DisplayFIFO(u32 x) noexcept;
void SetDispStat(u32 cpu, u16 val) noexcept;
void SetVCount(u16 val) noexcept;
bool MakeVRAMFlat_ABGCoherent(NonStupidBitField<512*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_BBGCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_AOBJCoherent(NonStupidBitField<256*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_BOBJCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_ABGExtPalCoherent(NonStupidBitField<32*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_BBGExtPalCoherent(NonStupidBitField<32*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_AOBJExtPalCoherent(NonStupidBitField<8*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_BOBJExtPalCoherent(NonStupidBitField<8*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_TextureCoherent(NonStupidBitField<512*1024/VRAMDirtyGranularity>& dirty) noexcept;
bool MakeVRAMFlat_TexPalCoherent(NonStupidBitField<128*1024/VRAMDirtyGranularity>& dirty) noexcept;
void SyncDirtyFlags() noexcept;
ARMJIT& JIT;
u16 VCount = 0;
u16 TotalScanlines = 0;
u16 DispStat[2] {};
u8 VRAMCNT[9] {};
u8 VRAMSTAT = 0;
u8 Palette[2*1024] {};
u8 OAM[2*1024] {};
u8 VRAM_A[128*1024] {};
u8 VRAM_B[128*1024] {};
u8 VRAM_C[128*1024] {};
u8 VRAM_D[128*1024] {};
u8 VRAM_E[ 64*1024] {};
u8 VRAM_F[ 16*1024] {};
u8 VRAM_G[ 16*1024] {};
u8 VRAM_H[ 32*1024] {};
u8 VRAM_I[ 16*1024] {};
u8* const VRAM[9] = {VRAM_A, VRAM_B, VRAM_C, VRAM_D, VRAM_E, VRAM_F, VRAM_G, VRAM_H, VRAM_I};
u32 const VRAMMask[9] = {0x1FFFF, 0x1FFFF, 0x1FFFF, 0x1FFFF, 0xFFFF, 0x3FFF, 0x3FFF, 0x7FFF, 0x3FFF};
u32 VRAMMap_LCDC = 0;
u32 VRAMMap_ABG[0x20] {};
u32 VRAMMap_AOBJ[0x10] {};
u32 VRAMMap_BBG[0x8] {};
u32 VRAMMap_BOBJ[0x8] {};
u32 VRAMMap_ABGExtPal[4] {};
u32 VRAMMap_AOBJExtPal {};
u32 VRAMMap_BBGExtPal[4] {};
u32 VRAMMap_BOBJExtPal {};
u32 VRAMMap_Texture[4] {};
u32 VRAMMap_TexPal[8] {};
u32 VRAMMap_ARM7[2] {};
u8* VRAMPtr_ABG[0x20] {};
u8* VRAMPtr_AOBJ[0x10] {};
u8* VRAMPtr_BBG[0x8] {};
u8* VRAMPtr_BOBJ[0x8] {};
int FrontBuffer = 0;
u32* Framebuffer[2][2] {};
GPU2D::Unit GPU2D_A;
GPU2D::Unit GPU2D_B;
melonDS::GPU3D GPU3D {};
NonStupidBitField<128*1024/VRAMDirtyGranularity> VRAMDirty[9] {};
VRAMTrackingSet<512*1024, 16*1024> VRAMDirty_ABG {};
VRAMTrackingSet<256*1024, 16*1024> VRAMDirty_AOBJ {};
VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_BBG {};
VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_BOBJ {};
VRAMTrackingSet<32*1024, 8*1024> VRAMDirty_ABGExtPal {};
VRAMTrackingSet<32*1024, 8*1024> VRAMDirty_BBGExtPal {};
VRAMTrackingSet<8*1024, 8*1024> VRAMDirty_AOBJExtPal {};
VRAMTrackingSet<8*1024, 8*1024> VRAMDirty_BOBJExtPal {};
VRAMTrackingSet<512*1024, 128*1024> VRAMDirty_Texture {};
VRAMTrackingSet<128*1024, 16*1024> VRAMDirty_TexPal {};
u8 VRAMFlat_ABG[512*1024] {};
u8 VRAMFlat_BBG[128*1024] {};
u8 VRAMFlat_AOBJ[256*1024] {};
u8 VRAMFlat_BOBJ[128*1024] {};
u8 VRAMFlat_ABGExtPal[32*1024] {};
u8 VRAMFlat_BBGExtPal[32*1024] {};
u8 VRAMFlat_AOBJExtPal[8*1024] {};
u8 VRAMFlat_BOBJExtPal[8*1024] {};
u8 VRAMFlat_Texture[512*1024] {};
u8 VRAMFlat_TexPal[128*1024] {};
int Renderer = 0;
#ifdef OGLRENDERER_ENABLED
std::unique_ptr<GLCompositor> CurGLCompositor = nullptr;
#endif
private:
void ResetVRAMCache() noexcept;
void AssignFramebuffers() noexcept;
template<typename T>
T ReadVRAM_ABGExtPal(u32 addr) const noexcept
{
u32 mask = VRAMMap_ABGExtPal[(addr >> 13) & 0x3];
T ret = 0;
if (mask & (1<<4)) ret |= *(T*)&VRAM_E[addr & 0x7FFF];
if (mask & (1<<5)) ret |= *(T*)&VRAM_F[addr & 0x3FFF];
if (mask & (1<<6)) ret |= *(T*)&VRAM_G[addr & 0x3FFF];
return ret;
}
template<typename T>
T ReadVRAM_BBGExtPal(u32 addr) const noexcept
{
u32 mask = VRAMMap_BBGExtPal[(addr >> 13) & 0x3];
T ret = 0;
if (mask & (1<<7)) ret |= *(T*)&VRAM_H[addr & 0x7FFF];
return ret;
}
template<typename T>
T ReadVRAM_AOBJExtPal(u32 addr) const noexcept
{
u32 mask = VRAMMap_AOBJExtPal;
T ret = 0;
if (mask & (1<<4)) ret |= *(T*)&VRAM_F[addr & 0x1FFF];
if (mask & (1<<5)) ret |= *(T*)&VRAM_G[addr & 0x1FFF];
return ret;
}
template<typename T>
T ReadVRAM_BOBJExtPal(u32 addr) const noexcept
{
u32 mask = VRAMMap_BOBJExtPal;
T ret = 0;
if (mask & (1<<8)) ret |= *(T*)&VRAM_I[addr & 0x1FFF];
return ret;
}
template <u32 MappingGranularity, u32 Size>
constexpr bool CopyLinearVRAM(u8* flat, const u32* mappings, NonStupidBitField<Size>& dirty, u64 (GPU::* const slowAccess)(u32) const noexcept) noexcept
{
const u32 VRAMBitsPerMapping = MappingGranularity / VRAMDirtyGranularity;
bool change = false;
typename NonStupidBitField<Size>::Iterator it = dirty.Begin();
while (it != dirty.End())
{
u32 offset = *it * VRAMDirtyGranularity;
u8* dst = flat + offset;
u8* fastAccess = GetUniqueBankPtr(mappings[*it / VRAMBitsPerMapping], offset);
if (fastAccess)
{
memcpy(dst, fastAccess, VRAMDirtyGranularity);
}
else
{
for (u32 i = 0; i < VRAMDirtyGranularity; i += 8)
*(u64*)&dst[i] = (this->*slowAccess)(offset + i);
}
change = true;
it++;
}
return change;
}
u32 NextVCount = 0;
bool RunFIFO = false;
u16 VMatch[2] {};
std::unique_ptr<GPU2D::Renderer2D> GPU2D_Renderer = nullptr;
u32 OAMDirty = 0;
u32 PaletteDirty = 0;
};
}
#endif