This lets VolumeDirectory/DirectoryBlob skip implementing
various volume functions like GetGameID, GetBanner, etc.
It also lets us view extracted discs in the game list.
This ends up breaking the boot process for Wii
DirectoryBlobs due to workarounds being removed from the
boot process, but that will be fixed later by adding
proper DirectoryBlob support for things like TMDs.
We now expect the directories to be laid out in a certain
format (based on the format that WIT uses) instead of requiring
the user to set the DVD root and apploader path settings.
This is useful for blob types that store Wii data unencrypted
(such as WIA and discs extracted to directories) so that
we don't have to waste CPU time encrypting in the blob code
just to decrypt right afterwards in the volume code.
The old approach to detecting DOL/ELF files doesn't fit
with the new way of implementing extracted discs.
The game list is already doing it in a way that's similar
to the approach that this commit uses.
The Config::AddLoadLayer functions call Load on the layer
explicitly, but Load is already called in the constructor,
so they'd cause the loader's Load function to be called twice,
which is potentially expensive considering we have to read an INI
from the host filesystem.
This commit removes the Config::AddLoadLayer functions because
they don't appear to be necessary.
This was mainly included for debugging, but could end up being confusing
for users, as well as polluting the GL program cache with a mix of uber
and specialized shaders if the option was changed.
On Windows, File::GetTempFilenameForAtomicWrite returns a path
somewhere in C:\Users\XXX\AppData\Local\Temp\{UUID here}\
in which all writes just fail.
Just use the SYSCONF path + ".tmp" for the temporary file name.
These vertex formats enable all attributes. Inactive attributes are set
to offset=0, and the smallest type possible. This "optimization" stops
the NV compiler from generating variants of vertex shaders.
This add support for SD protocol 2 while staying compatible with protocol 1.01.
Most of this is quite hacky, but it seems to be working well.
The original implementation was quite confusing, so I didn't touch most of the stuff I did not understand.
This makes the EGL interface select OpenGL|ES contexts over "desktop"
OpenGL ones.
Possibly not useful for anyone outside my own debugging, but you never
know
It's not particularily useful to list the platform here,
and these kinds of messages that use words as parameters
are more likely to be mistranslated than the average string.
Same as the previous commit, except I'm copying strings
in the other direction because the DolphinWX variants
of these strings could use some improvement.
The spec says it should have an EXT not OES suffix, as it's enabled as
an interaction with GL_EXT_multi_draw_arrays.
On some drivers GetProcAddress() returns NULL, which causes the
GLExtensions init to fail
This 'happened' to work if GetProcAddress() doesn't return NULL on missing
functions (as allowed in EGL) - as the function appears to never be called so
this would not have been noticed.
Mesa also (incorrectly?) exports the EXT version, so this would all
happen to work there, but appears to be contrary to the spec.
This invalid prefix even ended up in the upstream khronos registry, the
issue was reported here:
https://github.com/KhronosGroup/OpenGL-Registry/issues/81
The section is 0x461 bytes long, not 0x460. The config data is also now
initialised to zero to avoid garbage being written to the SYSCONF.
Because our handling has been wrong forever, we discard older BT.DINF
section backups as using them would result in the section being the
wrong size / incomplete again.
It turns out that the last byte of array entries isn't unused (as we
thought); instead, it looks like it's actually part of the main data,
and the length stored next to the name is in fact the length minus one.
Getting it wrong and always storing a null byte in there won't affect
most entries (since the last byte is zeroed most of the time), except:
- IPL.NIK: the length is stored in the last byte, and it must be kept.
- BT.DINF: u8 unknown[0x45] should be another Bluetooth device entry.
- Possibly other unknown affected entries.
I don't know who thought it would be a good idea to put the Wiimote
connect code as part of the Host interface, and have that called
from both the UI code and the core. And then hack around it by having
"force connect" events whenever Host_ConnectWiimote is called
from the core...
BluetoothEmu had its own bdaddr_t type which is a old style C struct
and typedef, which makes comparisons and copies a bit ugly.
On the other hand, BTReal had its own btaddr_t type using std::array.
To make things very slightly nicer, this commit changes the Bluetooth
code to use a single type (std::array<u8, 6>) for all BT addresses.
Imports/exports don't always use the title key. Exporting a title and
importing it back uses the PRNG key (aka backup key handle or key #5),
not the title key (at all).
To make things even more fun, some versions of IOS have a bug that
causes it to use a zeroed key instead of the PRNG key. When Nintendo
decided to fix it, they added checks to keep using the zeroed key only
in affected titles to avoid making existing exports useless.
(Thanks to tueidj for drawing my attention to this.
I missed this edge case during the initial implementation.)
This commit implements these checks so we are using the correct key
in all of these cases.
We now also use IOSC for decryption/encryption since built-in key
handles are used. And we now reject any invalid common key index,
just like ES.
Core::PauseAndLock requires all calls to it to be balanced, like this:
const bool was_unpaused = Core::PauseAndLock(true);
// do stuff on the CPU thread
Core::PauseAndLock(false, was_unpaused);
Aside from being a bit cumbersome, it turns out all callers really
don't need to know about was_unpaused at all. They just need to do
something on the CPU thread safely, including locking/unlocking.
So this commit replaces Core::PauseAndLock with a function that
makes both the purpose and the scope of what is being run on the
CPU thread visually clear. This makes it harder to accidentally run
something on the wrong thread, or forget the second call to
PauseAndLock to unpause, or forget that it needs to be passed
was_unpaused at the end.
We also don't need comments to indicate code X is being run on the
CPU thread anymore, as the function name makes it obvious.
The region mismatch check that we used can give false positives.
Skipping the check won't lead to any harm - games will ignore
save files that have a non-matching fourth game ID character.