SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
[conv.fpint]/1:
> A prvalue of a floating-point type can be converted to a prvalue of
> an integer type. The conversion truncates; that is, the fractional
> part is discarded. The behavior is undefined if the truncated value
> cannot be represented in the destination type.
Add a function to calculate the magic constants required to optimize
signed 32-bit division.
Since this optimization is not exclusive to any particular architecture,
JitCommon seemed like a good place to put this.
Additionally, VCacheEnhance has been added to UVAT_group1. According to YAGCD, this field is always 1.
TVtxDesc also now has separate low and high fields whose hex values correspond with the proper registers, instead of having one 33-bit value. This change was made in a way that should be backwards-compatible.
Check return value of calls to File::CreateTempDir() from CoreTiming,
FileSystem, and MMIO test classes to verify the test user directory
exists, and fail the tests otherwise.
If the compiler can detect an issue with a format string at compile
time, then we should take advantage of that and turn the issue into a
hard compile-time error as such problems almost always lead to UB.
This helps with catching logging or assertion messages that have been
converted over to fmt but are still using the old, non-fmt variants
of the logging macros.
This commit also fixes all incorrect usages that I could find.
This fixes CreateFullPath to not create directories when it is known
that they already exist, instead of calling CreateDirectory anyway
and checking if the error is AlreadyExists. (That doesn't work
now that we have an accurate implementation of CreateDirectory
that performs permission checks before checking for existence.)
I'm not sure what I was thinking when I wrote that function.
Also adds some tests for CreateFullPath.
Files cannot be given a different file name, only moved across
directories.
Add a test for that behaviour and fix the existing
RenameWithExistingTargetFile test.
Test the behavior of OpArg::WriteRest by using MOV with the various
addressing modes (MatR, MRegSum, etc.) in the source operand.
Both the instruction and the instruction length are validated.
- Fixed a bug where pushing items over queue's size left it in a corrupted state
- For non-trivial types, have clear() and pop() run destructors
- Added emplace(args...)
- Added empty()
FixedSizeQueue has semantics of a circular buffer,
so pushing items continuously is expected to keep overwriting oldest elements gracefully.
Tests have been updated to verify correctness of a previously bugged behaviour
and to verify correctness of destructing non-trivial types
Since C++17, non-member std::size() is present in the standard library
which also operates on regular C arrays. Given that, we can just replace
usages of ArraySize with that where applicable.
In many cases, we can just change the actual C array ArraySize() was
called on into a std::array and just use its .size() member function
instead.
In some other cases, we can collapse the loops they were used in, into a
ranged-for loop, eliminating the need for en explicit bounds query.
This allows us to update the rich presence description if a channel
is launched from the Wii Menu. It also handles other PPC title
launches, e.g. Smash Bros. Masterpieces.
Host.h: Added Host_TitleChanged().
DolphinNoGUI/MainNoGUI.cpp: Implemented Host_TitleChanged().
DolphinQt/Host.cpp: Implemented Host_TitleChanged().
Android/jni/MainAndroid.cpp: Stubbed Host_TitleChanged().
DSPTool/StubHost.cpp: Stubbed Host_TitleChanged().
UnitTests/StubHost.cpp: Stubbed Host_TitleChanged().
Previously these were required to be built into the executable so that
the JIT portion of the DSP code would build properly, as the
x86-64-specifics were tightly coupled to the DSP common code. As this is
no longer the case, this is no longer necessary.
Makes the enum values strongly-typed and prevents the identifiers from
polluting the PowerPC namespace. This also cleans up the parameters of
some functions where we were accepting an ambiguous int type and
expecting the correct values to be passed in.
Now those parameters accept a PowerPC::CPUCore type only, making it
immediately obvious which values should be passed in. It also turns out
we were storing these core types into other structures as plain ints,
which have also been corrected.
As this type is used directly with the configuration code, we need to
provide our own overloaded insertion (<<) and extraction (>>) operators
in order to make it compatible with it. These are fairly trivial to
implement, so there's no issue here.
A minor adjustment to TryParse() was required, as our generic function
was doing the following:
N tmp = 0;
which is problematic, as custom types may not be able to have that
assignment performed (e.g. strongly-typed enums), so we change this to:
N tmp;
which is sufficient, as the value is attempted to be initialized
immediately under that statement.
As suggested here: https://dolp.in/pr7059#pullrequestreview-125401778
More descriptive than having a std::tuple of FS::Mode, and lets us
give names to known triplets of modes (like in ES). Functions that
only forward mode arguments are slightly less verbose now too.
Given this is actually a part of the Host interface, this should be
placed with it.
While we're at it, turn it into an enum class so that we don't dump its
contained values into the surrounding scope. We can also make
Host_Message take the enum type itself directly instead of taking a
general int value.
After this, it'll be trivial to divide out the rest of Common.h and
remove the header from the repository entirely
Also move it to MathUtils where it belongs with the rest of the
power-of-two functions. This gets rid of pollution of the current scope
of any translation unit with b<value> macros that aren't intended to be
used directly.
Given bit conversions between types are quite common in emulation
(particularly when it comes to floating-point among other things) it
makes sense to provide a utility function that keeps all the boilerplate
contained; especially considering it makes it harder to accidentally
misuse std::memcpy (such as accidentally transposing arguments, etc).
Another benefit of this function is that it doesn't require separating
declarations from assignments, allowing variables to be declared const.
This makes the scenario of of uninitialized variables being used less
likely to occur.